帳號:guest(3.142.12.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張逸群
作者(外文):Chang, I-Chun
論文名稱(中文):簡易製備銅及氧化銅奈米材料應用於能源儲存元件
論文名稱(外文):Facile Synthesis of Copper and Copper Oxide Nanomaterials for the Applications in Energy Storage Devices
指導教授(中文):李紫原
指導教授(外文):Lee, Chi-Young
口試委員(中文):徐文光
黃暄益
裘性天
陳金銘
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9931811
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:93
中文關鍵詞:氧化亞銅鋰離子電池電解液奈米銅帶氫氧化鎳膺電容
外文關鍵詞:Cuprous oxideLi-ion batteryElectrolyteCopper nanobeltsNickel hydroxidePseudocapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本本工作是關於理想的儲能裝置內部電極的開發,我嘗試去找出便宜、製成簡易並且高性能的材料。在進來的研究中,鋰離子電池(Li-ion batteries)和超級電容器(supercapacitor)是兩種最重要的儲能裝置。鋰離子電池表現出高能量(specific energy)而超級電容器表現出高功率(specific power)。金屬銅及氧化亞銅(cuprous oxide)在此被選為研究對象由於產量豐富、價格便宜且容易製備。在鋰離子電池陽極材料的開發,我運用一個快速且簡易並在低溫下進行化學還原法並控制其及時成核的數目(in-situ nucleation)來制備小於100奈米的氧化亞銅方塊(nanocube)並能控制其大小。其中,邊長為80奈米的樣品表現出優良的鋰離子電池表現。而在超級電容器電極材料的開發,我利用兩次鋁金屬(aluminum)的自發性氧化反應在碳電極上成長出具核殼結構的銅-氫氧化鎳奈米帶(Cu@Ni(OH)2 nanobelts),利用核心奈米銅帶的導電性和結構作為集電器(current collector)來提供快速導電。這樣的核殼奈米帶展現出極高的贋電容值(pseudocapacitance)並維持高速充放電的特性(rate capability)。這兩個工作都成功的發展出次世代儲能裝置可能的電極材料,同時具有高能量和高功率的特性。
The focus of my work is to find the possibility of synthesizing cheap materials by simple approaches for high performance energy storage devices. Li-ion batteries and electrochemical capacitor are considered two important future energy storage systems. Copper and cuprous oxide is chosen as electrode materials for accomplishing this purpose and synthesized by simple and cost-effective approaches. In developing Li-ion battery anode material, uniform and monodispersed with tunable sized Cu2O nanocubes were synthesized by a low-temperature in-situ nucleation aqueous chemical reduction. The nanocubes with an edge length of approximately 80 nm used as an anode exhibit excellent lithium storage behavior. In the development of electrochemical capacitor electrode, Cu@Ni(OH)2 nanobelts were fabricated by two aluminum-driven spontaneous electrochemical depositing on carbon/aluminum electrodes. The CuNB acts as a three dimension nanosized current collector for fast electron transport. The Cu@Ni(OH)2 NBs function as pseudocapacitive electrodes, which exhibit a high specific capacitance and a remarkable rate performance. Both of these two studies show a possible electrode material for next generation high-energy and high-power energy storage devices.
ABSTRACT i
ABSTRACT (in Chinese) ii
Table of Contents iii
List of Tables vii
List of Figure Captions viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Li-ion batteries 6
2.1.1 Three type of anode materials base on Li ion insertion and exertion 9
2.1.2 Copper oxide as anode in LIB 11
2.2 Synthesis of Cu2O nanostructrue 13
2.2.1 Polyol method 13
2.2.2 Electrochemical deposition 14
2.1.3.4 Aqueous chemical reduction 15
2.3 Electrochemical capacitors 17
2.3.1 Electrostatic capacitors (EDLC) 18
2.3.2 Pseudocapacitors (FC) 19
2.3.3 Metal oxide and hydroxide as electrode for FCs 20
2.4 Synthesis of Ni(OH)2 nanostructure 21
2.4.1 Chemical method 22
2.4.2 Electrochemical deposition 23
2.5 Improvement in performance of LIBs and FCs 24
2.5.1 Nanostructured materials 24
2.5.2 Current collector 25
Chapter 3 Large-scale Synthesis of Uniform Cu2O Nanocubes with Tunable Sizes by In-situ Nucleation and Its Li-ion Storage Properties 27
3.1 Abstract 27
3.2 Introduction and motivation 28
3.3 Method 30
3.3.1 The detailed procedure of Cu2O nanocube synthesis 30
3.3.2 Spectroscopic characterizations 31
3.3.3 Electrochemical evaluation 31
3.4 Characterizations 33
3.5 Li-ion storage properties 38
3.5.1 The effect of electrolyte on Li-ion storage 38
3.5.2 The effect of Size on Li-ion storage 45
3.6 Summary 48
Chapter 4 Self-powered Electrochemical Deposition of Cu@Ni(OH)2 and Cu@CoxNi1-x(OH)2 Nanobelts for High Performance Pseudocapacitors 49
4.1 Abstract 49
4.2 Introduction and motivation 50
4.3 Method 53
4.3.1 Chemicals 53
4.3.2 Preparation of carbon/aluminum substrate 53
4.3.3 Preparation of Cu@Ni(OH)2 nanobelts 53
4.3.4 Material characterizations 54
4.3.5 Electrochemical evaluation 55
4.4 Morphological studies of Cu@Ni(OH)2 nanobelts 56
4.5 Pseudocapacitance of Cu@Ni(OH)2 nanobelts 63
4.6 Pseudocapacitance of Cu@ CoxNi1-x(OH)2 nanobelts 70
4.7 Summary 73
Chapter 5 Conclusions 74
5.1 Conclusion of this study 74
Appendix – Growth of Cu Nanobelts on Copper Foil and Its Potential Applications 76
A.1 The effect of each ions in the growth solution 77
A.1.1 The effect of chloride 77
A.1.2 The concentration of CTAC and nitric acid 78
A.1.3 Brief summary 80
A.2 Growth of Cu nanobelts on copper foil 81
A.2.1 Galvanic deposition on Cu foil 81
A.2.2 Electrodeposition of CuNBs on Cu foil 82
Reference 84
Publication List 92
Reference
1. M. V. Reddy, G. V. Subba Rao and B. V. R. Chowdari, Chemical Reviews, 2013, 113, 5364-5457.
2. K. Amine, J. Liu, I. Belharouak, S. H. Kang, I. Bloom, D. Vissers and G. Henriksen, Journal of Power Sources, 2005, 146, 111-115.
3. H. Kondo, Y. Takeuchi, T. Sasaki, S. Kawauchi, Y. Itou, O. Hiruta, C. Okuda, M. Yonemura, T. Kamiyama and Y. Ukyo, Journal of Power Sources, 2007, 174, 1131-1136.
4. H. Yang and J. Prakash, Journal of The Electrochemical Society, 2004, 151, A1222-A1229.
5. S. Zheng, R. Huang, Y. Makimura, Y. Ukyo, C. A. J. Fisher, T. Hirayama and Y. Ikuhara, Journal of The Electrochemical Society, 2011, 158, A357-A362.
6. S.-T. Myung, K. Izumi, S. Komaba, Y.-K. Sun, H. Yashiro and N. Kumagai, Chemistry of Materials, 2005, 17, 3695-3704.
7. M. V. Reddy, G. V. S. Rao and B. V. R. Chowdari, Journal of Power Sources, 2006, 159, 263-267.
8. K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, Electrochimica Acta, 2002, 48, 145-151.
9. Z. Chen and J. R. Dahn, Electrochimica Acta, 2004, 49, 1079-1090.
10. D. D. MacNeil, Z. Lu, Z. Chen and J. R. Dahn, Journal of Power Sources, 2002, 108, 8-14.
11. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi and H. Komori, Electrochimica Acta, 1993, 38, 1159-1167.
12. K. S. Tan, M. V. Reddy, G. V. S. Rao and B. V. R. Chowdari, Journal of Power Sources, 2005, 147, 241-248.
13. G. G. Amatucci, A. Blyr, C. Sigala, P. Alfonse and J. M. Tarascon, Solid State Ionics, 1997, 104, 13-25.
14. D. H. Jang, Y. J. Shin and S. M. Oh, Journal of The Electrochemical Society, 1996, 143, 2204-2211.
15. Y. Matsuo, R. Kostecki and F. McLarnon, Journal of The Electrochemical Society, 2001, 148, A687-A692.
16. G. Pistoia, D. Zane and Y. Zhang, Journal of The Electrochemical Society, 1995, 142, 2551-2557.
17. K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, Journal of Materials Chemistry, 2003, 13, 106-113.
18. P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar, Nature Materials, 2004, 3, 147-152.
19. K.-F. Hsu, S.-Y. Tsay and B.-J. Hwang, Journal of Materials Chemistry, 2004, 14, 2690-2695.
20. M. S. Islam, D. J. Driscoll, C. A. J. Fisher and P. R. Slater, Chemistry of Materials, 2005, 17, 5085-5092.
21. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, Journal of The Electrochemical Society, 1997, 144, 1188-1194.
22. K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari and J. J. Vittal, Energy & Environmental Science, 2010, 3, 457-463.
23. Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff and J. Liu, Journal of Power Sources, 2009, 192, 588-598.
24. J.-Y. Shin, D. Samuelis and J. Maier, Advanced Functional Materials, 2011, 21, 3464-3472.
25. H.-E. Wang, H. Cheng, C. Liu, X. Chen, Q. Jiang, Z. Lu, Y. Y. Li, C. Y. Chung, W. Zhang, J. A. Zapien, L. Martinu and I. Bello, Journal of Power Sources, 2011, 196, 6394-6399.
26. R. Xu, J. Li, Z. Tang and Z. Zhang, Electrochimica Acta, 2011, 56, 6330-6335.
27. Y.-M. Jiang, K.-X. Wang, X.-X. Guo, X. Wei, J.-F. Wang and J.-S. Chen, Journal of Power Sources, 2012, 214, 298-302.
28. W.-H. Ryu, D.-H. Nam, Y.-S. Ko, R.-H. Kim and H.-S. Kwon, Electrochimica Acta, 2012, 61, 19-24.
29. A. M. Serventi, I. R. Rodrigues, M. L. Trudeau, D. Antonelli and K. Zaghib, Journal of Power Sources, 2012, 202, 357-363.
30. H.-K. Kim, S.-M. Bak and K.-B. Kim, Electrochemistry Communications, 2010, 12, 1768-1771.
31. T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu and H.-B. Qiao, Journal of Physics and Chemistry of Solids, 2010, 71, 1236-1242.
32. N. Zhu, W. Liu, M. Xue, Z. Xie, D. Zhao, M. Zhang, J. Chen and T. Cao, Electrochimica Acta, 2010, 55, 5813-5818.
33. T. Takamura, M. Uehara, J. Suzuki, K. Sekine and K. Tamura, Journal of Power Sources, 2006, 158, 1401-1404.
34. D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas and J.-M. Tarascon, Journal of Materials Chemistry, 2007, 17, 3759-3772.
35. H. Ma, F. Cheng, J. Y. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao and J. Liang, Advanced Materials, 2007, 19, 4067-4070.
36. L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng and Y. Cui, Nano Letters, 2008, 9, 491-495.
37. C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel and Y. Cui, ACS Nano, 2010, 4, 1443-1450.
38. B. Hertzberg, A. Alexeev and G. Yushin, Journal of the American Chemical Society, 2010, 132, 8548-8549.
39. N.-S. Choi, Y. Yao, Y. Cui and J. Cho, Journal of Materials Chemistry, 2011, 21, 9825-9840.
40. N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang and Y. Cui, Nano Letters, 2012, 12, 3315-3321.
41. B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu and L. Chen, Electrochemistry Communications, 2008, 10, 1876-1878.
42. R. A. Huggins, Journal of Power Sources, 1999, 81–82, 13-19.
43. A. D. W. Todd, P. P. Ferguson, M. D. Fleischauer and J. R. Dahn, International Journal of Energy Research, 2010, 34, 535-555.
44. M. H. Chen, Z. C. Huang, G. T. Wu, G. M. Zhu, J. K. You and Z. G. Lin, Materials Research Bulletin, 2003, 38, 831-836.
45. J. Xie, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, X. B. Zhao and G. S. Cao, Solid State Ionics, 2010, 181, 1611-1615.
46. J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach and A. Gedanken, Chemistry of Materials, 2000, 12, 2557-2566.
47. M. Mohamedi, S.-J. Lee, D. Takahashi, M. Nishizawa, T. Itoh and I. Uchida, Electrochimica Acta, 2001, 46, 1161-1168.
48. Z. P. Guo, G. D. Du, Y. Nuli, M. F. Hassan and H. K. Liu, Journal of Materials Chemistry, 2009, 19, 3253-3257.
49. P. Poizot, S. Laruelle, S. Grugeon and J.-M. Tarascon, Journal of The Electrochemical Society, 2002, 149, A1212-A1217.
50. K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang and L. Chen, Journal of Power Sources, 2010, 195, 3300-3308.
51. X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang and D. He, Journal of Materials Chemistry, 2012, 22, 9189-9194.
52. K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui and L. Chen, ACS Applied Materials & Interfaces, 2012, 4, 658-664.
53. W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo and L.-J. Wan, Advanced Functional Materials, 2008, 18, 3941-3946.
54. T. Muraliganth, A. Vadivel Murugan and A. Manthiram, Chemical Communications, 2009, 7360-7362.
55. S. Wang, J. Zhang and C. Chen, Journal of Power Sources, 2010, 195, 5379-5381.
56. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu and H.-M. Cheng, Chemistry of Materials, 2010, 22, 5306-5313.
57. H. Qiao, L. Xiao, Z. Zheng, H. Liu, F. Jia and L. Zhang, Journal of Power Sources, 2008, 185, 486-491.
58. J. Jiang, J. Liu, R. Ding, X. Ji, Y. Hu, X. Li, A. Hu, F. Wu, Z. Zhu and X. Huang, The Journal of Physical Chemistry C, 2009, 114, 929-932.
59. C. H. Chen, B. J. Hwang, J. S. Do, J. H. Weng, M. Venkateswarlu, M. Y. Cheng, R. Santhanam, K. Ragavendran, J. F. Lee, J. M. Chen and D. G. Liu, Electrochemistry Communications, 2010, 12, 496-498.
60. C. Peng, B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu and J. Yang, ACS Nano, 2012, 6, 1074-1081.
61. X. H. Huang, J. P. Tu, B. Zhang, C. Q. Zhang, Y. Li, Y. F. Yuan and H. M. Wu, Journal of Power Sources, 2006, 161, 541-544.
62. B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. Subba Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim and C.-H. Sow, Chemistry of Materials, 2008, 20, 3360-3367.
63. L. Liu, Y. Li, S. Yuan, M. Ge, M. Ren, C. Sun and Z. Zhou, The Journal of Physical Chemistry C, 2009, 114, 251-255.
64. A. Débart, L. Dupont, P. Poizot, J.-B. Leriche and J. M. Tarascon Journal of The Electrochemical Society, 2001, 148, A1266-A1274.
65. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot and J.-M. Tarascon, Journal of The Electrochemical Society, 2001, 148, A285-A292.
66. Y. H. Lee, I. C. Leu, C. L. Liao, S. T. Chang, M. T. Wu, J. H. Yen and K. Z. Fung, Electrochemical and Solid-State Letters, 2006, 9, A207-A210.
67. L. J. Fu, J. Gao, T. Zhang, Q. Cao, L. C. Yang, Y. P. Wu, R. Holze and H. Q. Wu, Journal of Power Sources, 2007, 174, 1197-1200.
68. H. Wang, Q. Pan, J. Zhao and W. Chen, Journal of Alloys and Compounds, 2009, 476, 408-413.
69. J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang and S. J. Shi, Journal of Power Sources, 2010, 195, 313-319.
70. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, 2000, 407, 496-499.
71. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Journal of Power Sources, 2001, 97–98, 235-239.
72. F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dollé, A. S. Gozdz and J.-M. Tarascon, Electrochemical and Solid-State Letters, 2002, 5, A115-A118.
73. S. Grugeon, S. Laruelle, L. Dupont and J. M. Tarascon, Solid State Sciences, 2003, 5, 895-904.
74. X. Wang, D.-M. Tang, H. Li, W. Yi, T. Zhai, Y. Bando and D. Golberg, Chemical Communications, 2012, 48, 4812-4814.
75. C. H. B. Ng and W. Y. Fan, The Journal of Physical Chemistry B, 2006, 110, 20801-20807.
76. J. Zhang, J. Liu, Q. Peng, X. Wang and Y. Li, Chemistry of Materials, 2006, 18, 867-871.
77. H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao and B. Yu, Advanced Functional Materials, 2007, 17, 2766-2771.
78. J.-H. Zhong, G.-R. Li, Z.-L. Wang, Y.-N. Ou and Y.-X. Tong, Inorganic Chemistry, 2010, 50, 757-763.
79. C.-H. Kuo, Y.-C. Yang, S. Gwo and M. H. Huang, Journal of the American Chemical Society, 2010, 133, 1052-1057.
80. J. Y. Xiang, X. L. Wang, X. H. Xia, L. Zhang, Y. Zhou, S. J. Shi and J. P. Tu, Electrochimica Acta, 2010, 55, 4921-4925.
81. B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro and S. O'Brien, Nano Letters, 2006, 6, 2095-2098.
82. M. Leng, M. Liu, Y. Zhang, Z. Wang, C. Yu, X. Yang, H. Zhang and C. Wang, Journal of the American Chemical Society, 2010, 132, 17084-17087.
83. A. Paracchino, V. Laporte, K. Sivula, M. Graetzel and E. Thimsen, Nature Materials, 2011, 10, 456-461.
84. C. H. Kuo, C. H. Chen and M. H. Huang, Advanced Functional Materials, 2007, 17, 3773-3780.
85. H. Xu, W. Wang and W. Zhu, The Journal of Physical Chemistry B, 2006, 110, 13829-13834.
86. H. Xu and W. Wang, Angewandte Chemie International Edition, 2007, 46, 1489-1492.
87. L. Zhang and H. Wang, ACS Nano, 2011, 5, 3257-3267.
88. W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu and C. L. Zheng, Advanced Materials, 2002, 14, 67-69.
89. Z. C. Orel, A. Anžlovar, G. Dražić and M. Žigon, Crystal Growth & Design, 2007, 7, 453-458.
90. S.-K. Li, C.-H. Li, F.-Z. Huang, Y. Wang, Y.-H. Shen, A.-J. Xie and Q. Wu, Journal of Nanoparticle Research, 2011, 13, 2865-2874.
91. C. M. McShane and K.-S. Choi, Journal of the American Chemical Society, 2009, 131, 2561-2569.
92. L. Gou and C. J. Murphy, Nano Letters, 2002, 3, 231-234.
93. R. Kötz and M. Carlen, Electrochimica Acta, 2000, 45, 2483-2498.
94. O. Barbieri, M. Hahn, A. Herzog and R. Kötz, Carbon, 2005, 43, 1303-1310.
95. E. Raymundo-Piñero, K. Kierzek, J. Machnikowski and F. Béguin, Carbon, 2006, 44, 2498-2507.
96. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, Journal of Physical Chemistry C, 2009, 113, 13103-13107.
97. C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Letters, 2010, 10, 4863-4868.
98. Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, Advanced Materials, 2011, 23, 4828-4850.
99. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, Science, 2011, 332, 1537-1541.
100. J. N. Barisci, G. G. Wallace and R. H. Baughman, Journal of The Electrochemical Society, 2000, 147, 4580-4583.
101. S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova and A. Oya, Electrochemistry Communications, 2002, 4, 593-598.
102. H. Kim and B. N. Popov, Journal of Power Sources, 2002, 104, 52-61.
103. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami and Y. Takasu, The Journal of Physical Chemistry B, 2005, 109, 7330-7338.
104. C.-C. Hu, K.-H. Chang, M.-C. Lin and Y.-T. Wu, Nano Letters, 2006, 6, 2690-2695.
105. I.-H. Kim and K.-B. Kim, Journal of The Electrochemical Society, 2006, 153, A383-A389.
106. G.-Y. Yu, W.-X. Chen, Y.-F. Zheng, J. Zhao, X. Li and Z.-D. Xu, Materials Letters, 2006, 60, 2453-2456.
107. F. Pico, E. Morales, J. A. Fernandez, T. A. Centeno, J. Ibañez, R. M. Rojas, J. M. Amarilla and J. M. Rojo, Electrochimica Acta, 2009, 54, 2239-2245.
108. S. Devaraj and N. Munichandraiah, Journal of Physical Chemistry C, 2008, 112, 4406-4417.
109. L. Bao, J. Zang and X. Li, Nano Letters, 2011, 11, 1215-1220.
110. J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong and H. J. Fan, Advanced Materials, 2011, 23, 2076-2081.
111. W. Wei, X. Cui, W. Chen and D. G. Ivey, Chemical Society Reviews, 2011, 40, 1697-1721.
112. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui and Z. Bao, Nano Letters, 2011, 11, 4438-4442.
113. H.-K. Kim, T.-Y. Seong, J.-H. Lim, W. Ii Cho and Y. Soo Yoon, Journal of Power Sources, 2001, 102, 167-171.
114. V. Srinivasan and J. W. Weidner, Journal of Power Sources, 2002, 108, 15-20.
115. C. Yuan, X. Zhang, L. Su, B. Gao and L. Shen, Journal of Materials Chemistry, 2009, 19, 5772-5777.
116. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng and Q. Yan, Nano Research, 2010, 3, 643-652.
117. V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura, Electrochemistry Communications, 2007, 9, 2315-2319.
118. V. Gupta, S. Gupta and N. Miura, Journal of Power Sources, 2008, 177, 685-689.
119. W.-J. Zhou, M.-W. Xu, D.-D. Zhao, C.-L. Xu and H.-L. Li, Microporous and Mesoporous Materials, 2009, 117, 55-60.
120. J. W. Lee, T. Ahn, D. Soundararajan, J. M. Ko and J.-D. Kim, Chemical Communications, 2011, 47, 6305-6307.
121. J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Advanced Functional Materials, 2012, 22, 2632-2641.
122. J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang and R. S. Ruoff, ACS Nano, 2013, 7, 6237-6243.
123. A. Motori, F. Sandrolini and G. Davolio, Journal of Power Sources, 1994, 48, 361-370.
124. P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet and A. d. Guibert, Journal of Power Sources, 1982, 8, 229-255.
125. M. C. Bernard, P. Bernard, M. Keddam, S. Senyarich and H. Takenouti, Electrochimica Acta, 1996, 41, 91-93.
126. M. Rajamathi, G. N. Subbanna and P. Vishnu Kamath, Journal of Materials Chemistry, 1997, 7, 2293-2296.
127. X. Wang, H. Luo, P. V. Parkhutik, A.-C. Millan and E. Matveeva, Journal of Power Sources, 2003, 115, 153-160.
128. M. Akinc, N. Jongen, J. Lemaître and H. Hofmann, Journal of the European Ceramic Society, 1998, 18, 1559-1564.
129. B. Pejova, T. Kocareva, M. Najdoski and I. Grozdanov, Applied Surface Science, 2000, 165, 271-278.
130. C.-C. Hu, J.-C. Chen and K.-H. Chang, Journal of Power Sources, 2013, 221, 128-133.
131. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. Van Schalkwijk, Nature Materials, 2005, 4, 366-377.
132. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon, Nature Materials, 2006, 5, 567-573.
133. R.-S. Juang and L.-C. Lin, Water Research, 2000, 34, 43-50.
134. Y. M. Kang, M. S. Song, J. H. Kim, H. S. Kim, M. S. Park, J. Y. Lee, H. K. Liu and S. X. Dou, Electrochimica Acta, 2005, 50, 3667-3673.
135. L. Zhao, H. Chen, Y. Wang, H. Che, P. Gunawan, Z. Zhong, H. Li and F. Su, Chemistry of Materials, 2012, 24, 1136-1142.
136. I. C. Chang, T.-K. Huang, H.-K. Lin, Y.-F. Tzeng, C.-W. Peng, F.-M. Pan, C.-Y. Lee and H.-T. Chiu, ACS Applied Materials & Interfaces, 2009, 1, 1375-1378.
137. C. Q. Zhang, J. P. Tu, X. H. Huang, Y. F. Yuan, X. T. Chen and F. Mao, Journal of Alloys and Compounds, 2007, 441, 52-56.
138. J. Y. Xiang, J. P. Tu, Y. F. Yuan, X. H. Huang, Y. Zhou and L. Zhang, Electrochemistry Communications, 2009, 11, 262-265.
139. K. Chen, S. Song and D. Xue, CrystEngComm, 2013, 15, 10028-10033.
140. T.-K. Huang, T.-H. Cheng, M.-Y. Yen, W.-H. Hsiao, L.-S. Wang, F.-R. Chen, J.-J. Kai, C.-Y. Lee and H.-T. Chiu, Langmuir, 2007, 23, 5722-5726.
141. A. Gutés, C. Carraro and R. Maboudian, Journal of the American Chemical Society, 2010, 132, 1476-1477.
142. I. Mintsouli, J. Georgieva, S. Armyanov, E. Valova, G. Avdeev, A. Hubin, O. Steenhaut, J. Dille, D. Tsiplakides, S. Balomenou and S. Sotiropoulos, Applied Catalysis B: Environmental, 2013, 136–137, 160-167.
143. L. Liu, S.-H. Yoo and S. Park, Chemistry of Materials, 2010, 22, 2681-2684.
144. M. Mohl, D. Dobo, A. Kukovecz, Z. Konya, K. Kordas, J. Wei, R. Vajtai and P. M. Ajayan, The Journal of Physical Chemistry C, 2011, 115, 9403-9409.
145. T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh and M. Lameii, Applied Surface Science, 2008, 255, 2730-2734.
146. C. Shang, S. Dong, S. Wang, D. Xiao, P. Han, X. Wang, L. Gu and G. Cui, ACS Nano, 2013, 7, 5430-5436.
147. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong and G. W. Yang, Nature Communications, 2013, 4.
148. S. Chen, J. Duan, Y. Tang and S. Zhang Qiao, Chemistry – A European Journal, 2013, 19, 7118-7124.
149. Z. Pu, Q. Liu, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi and X. Sun, Electrochimica Acta, 2013, 109, 252-255.
150. Y. Cheng, H. Zhang, C. V. Varanasi and J. Liu, Energy & Environmental Science, 2013, 6, 3314-3321.
151. G.-W. Yang, C.-L. Xu and H.-L. Li, Chemical Communications, 2008, 6537-6539.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *