帳號:guest(18.222.184.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡承學
論文名稱(中文):304不銹鋼與82合金異材焊件在模擬沸水式反應器環境中應力腐蝕行為研究
論文名稱(外文):Stress Corrosion Cracking of 304 SS-Alloy 82 Dissimilar Metal Welds in Simulated BWR Environments
指導教授(中文):葉宗洸
口試委員(中文):葉宗洸
黃俊源
歐陽汎怡
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:9913513
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:249
中文關鍵詞:沸水式反應器應力腐蝕異材焊接慢應變速率拉伸實驗
相關次數:
  • 推薦推薦:0
  • 點閱點閱:126
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
近年許多商轉中的輕水式反應器(Light Water Reactor, LWR),在結構組件上常出現異材金屬銲接之應力腐蝕龜裂(Stress Corrosion Crack, SCC)。國內核電廠結構組件常使用的沃斯田不銹鋼304與82合金銲件,亦可能遭遇此問題,因此值得深入研究探討。本實驗在模擬沸水式反應器環境中藉由304不鏽鋼和82合金異材銲接試樣研究應力腐蝕龜裂,並探討試樣在不同的前處理條件後置於高溫溶氫或溶氧環境下材料對於應力腐蝕的敏感性。經由慢速率伸實驗與SEM微結構觀察可得知,在高溫溶氧環境下經固溶處理後的試樣有最佳抗應力腐蝕的能力,敏化後施行氧化鋯抑制性被覆處理相較於敏化處理也能有效的增加抗應力腐蝕能力。飼水注氫雖然改善了水化學環境但仍無法完全抑制住應力腐蝕的發生,而其中經固溶處理後的試樣有最佳抗應力腐蝕的能力;敏化後施行氧化鋯抑制性被覆處理的試樣與敏化處理的試樣實驗結果差異不大。比較溶氧、溶氫環境下試樣腐蝕現象,敏化處理的試樣在溶氫環境下抗應力腐蝕能力增益最多。整體而言,溶氫環境確實可使樣品有較佳的抗應力腐蝕能力。
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 ix
圖目錄 xi
第一章 1
1-1 研究動機 1
1-2 研究方向 3
第二章 基礎理論 4
2.1核電廠組件使用材料簡介 4
2.2異材金屬焊接 6
2.2.1焊接金屬簡介 6
2.2.2 Schaeffler圖 7
2.2.3異材金屬焊接方法 8
2.3管件劣化 12
2.3.1核電廠中應力腐蝕相關經驗 14
2.4應力應變曲線圖(Stress - Strain curve) 16
2.4.1拉伸試驗簡介 16
2.4.2 晶粒大小對降伏強度與抗拉強度的影響 22
2.5 伊凡斯圖(Evan’s diagram) 22
2.5.1 加氫水化學(Hydrogen Water Chemistry) 23
2.5.2貴重金屬添加(Noble Metal Chemical Addition) 24
2.5.3 抑制性被覆(IPC) 25
第三章 文獻回顧 28
3-1應力腐蝕 28
3-1-1應力腐蝕必要因素 29
3-1-2應力腐蝕機制 31
3-1-3應力因子 - 焊接殘留應力成因 37
3-1-4材料因子 - 沃斯田鐵系不銹鋼敏化現象 39
3-1-5沃斯田鐵系不銹鋼高溫應力腐蝕破裂型態 44
3-1-6環境雜質來源與對應力腐蝕龜裂之影響 46
3-1-7 溫度對SCC影響 48
3-1-8流速對應力腐蝕的影響 51
3-1-9 不銹鋼中雜質對應力腐蝕之影響 53
3-1-10 電化學腐蝕電位與應力腐蝕龜裂關係 53
3-2沃斯田鐵系不銹鋼之沿晶腐蝕 55
3-3異材焊接 56
3-3-1焊件結構 56
3-3-2 世界各國對於異材焊件微結構與機械性質的研究 61
3-3-3焊件腐蝕: 68
3-4 應力腐蝕防治方法 69
3-5加氫水化學 75
3-6抑制方法 – 抑制性被覆 85
3-6-1 高溫純水中不銹鋼表面氧化膜結構 85
3-6-2 抑制性被覆方法 92
3-6-3 抑制性覆膜機制 108
3-6-4 相變化與相組成 112
3-7 實驗方法簡介 112
3-7-1焊件檢測方法 112
3-7-2 沿晶腐蝕敏感性測試方法 116
3-7-3 沿晶腐蝕敏感性測試 122
3-7-4 應力腐蝕實驗方法: 128
3-7-5 微硬度試驗 132
3-7-6 殘留應力測試 134
第四章 實驗設備及步驟 139
4.1 實驗設計及方法 139
4.2熱處理 143
4.3金相觀測 143
4.4 微硬度量測 144
4.5 殘留應力量測 145
4.6 敏化程度測試 145
4.7抑制性被覆 145
4.8 實驗設備 146
4.9拉伸樣品製作 149
第五章 結果與討論 151
5.1 熱處理條件對於置於一般水化學環境之304不銹鋼應力腐蝕龜裂影響 151
5.1.1 304不銹鋼沿晶腐蝕敏感性與熱處理條件的關係 151
5.1.2 微結構分析 153
5.1.3 304不銹鋼慢速率應變拉伸數據分析 153
5.1.4 破裂面分析 157
5.2 焊件檢查 169
5.3異材焊件結構 169
5.4 異材焊件微結構 171
5.5 異材焊件沿晶腐蝕敏感性測試 174
5.6 異材焊件微硬度量測 183
5.7 異材焊件殘留應力量測 187
5.8 異材焊接式樣抑制性被覆處理 188
5.9 304不銹鋼與82合金異材焊接試樣慢速率應變拉伸數據分析 194
5.9.1 溶氧環境下304不銹鋼異材焊接試樣應力腐蝕行為 196
5.9.2 溶氫環境下304不銹鋼試樣應力腐蝕行為 199
5.10 溶氧、溶氫環境下304不銹鋼異材焊接試樣破裂面之觀察 201
第六章 結論 230
參考文獻 232
1. Fredric A. Simonen、Stephen R. Gosselin, Life Prediction and Monitoring of Nuclear Power Plant Components for Service-Related Degradation, Journal of pressure vessel technology, 2001, vol. 123, pp. 58-64.
2. 郭榮卿, 核能電廠材料劣化與對策研究:現況與規劃, 2006台灣原子能論壇, 楊義卿,台灣, 中華民國,2006。
3. R. M. Horn, G. M. Gordon, F. P. Ford and R. L. Cowan, Experience and assessment of stress corrosion cracking in L-grade stainless steel BWR internals, Nuclear Engineering and Design, 1997, pp.313-325.
4. R. L. Klueh, J. F. King and J. L. Griffith, A Simple Test for Dissimilar-Metal Welds, Welding Journal, 1983, pp.154-159.
5. C. D. Lundin, Dissimilar Metal Welds— Transition Joints Literature Review, Welding Journal, 1982, pp.58-63.
6. M. J. Cieslak, and W. F. Savage, Weldability and Solidification on Phenomena of Cast Stainless Steel, Weld Journal, Vol. 59, pp. 136-146, 1980.
7. C. D. Lundin and C. P. D. Chou, Fissuring in the Hazard HAZ Region of Austenitic Stainless Steel Welds, Welding Journal, pp. 113-118, April 1985. 51.
8. S. Venugopal, S.L. Mannan and P. Rodriguez, Optimal Design of a Hot Extrusion Process for AISI Type 304L Stainless Steel Using a Model for the Evolution of Microstructure, Modeling and Simulation in Material Science and Engineering, 10(3), pp.253-265, 2002.
9. H.U. Hong, B.S. Rho and S.W. Nam, A Study on the Crack Initiation and Growth from δ-ferrite/γ-phase under Continuous Fatigue and Creep-Fatigue Conditions in type 304L Stainless Steels, International Journal of Fatigue, 24(10), pp.1063-1070, 2002.
10. E. Folkhard etc., Welding Metallurgy of Stainless Steels,Springer-Verlag, Wien, 1988.
11. 鍾自強„ 焊接奧斯田鐵不锈鋼的問題及解決方法‟機械月刊,第七卷第十期,中華民國七十年10月號。
12. S. Kou, Welding metallurgy, Wiley, New York, pp.179-187, 1987.
13. 李建軍, 管道焊接技術, 石油工業出版社, 2007。
14. 王振欽, 焊接學, 高立圖書, 1997。
15. Kuen Ting, The evaluation of intergranular stress corrosion cracking problems of stainless steel piping in Taiwan BWR-6 nuclear power plant, Nuclear Engineering and Design, 1999,pp245-254.
16. U. S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information Notice 93-101,1993.
17. 游章雄, 核電廠管路系統之可靠度分析及預防維護策略研究, 國立台灣大學機械工程研究所博士論文, 2002.
18. J.R. Crum & R.C. Scarberry.”Corrosion Testing of Inconel Alloy690 for PWR Steam Generators”. Journal Material for Energy System, Vol.4, pp. 125-130,1982.
19. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI,1989 Edition. Rules for In-service Inspection of Nuclear Power Plant Components.
20. United States Nuclear Regulatory Commission, Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping, NUREG 0313, Rev. 2, 1988.
21. United States Nuclear Regulatory Commission, NRC Generic Letter 88-01, with Supplement 1,NRC Position on IGSCC in BWR Austenitic Steel Piping, 1992.
22. 丁鯤, 台灣核能電廠管路之老化/劣化之管理對策, 第五屆兩岸核能學術交流研討會, 2005
23. JONES, R., “Mitigation corrosion problems in LWRs via chemistry changes,” Water Chemistry of Nuclear Reactor Systems(Proc. Int. Conf. San Francisco, 2004), EPRI report 1011579, Palo Alto, CA (2004).
24. IAEA Nuclear Energy Series, Stress corrosion cracking in light water reactors : good practice and lessons learned, 2011.
25. EHRNSTEN U., et al., “Intergranular cracking of AISI 316NG stainless steel in BWR environment,” Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors (Proc. 10th Int. Conf. Lake Tahoe, NV, 2001), NACE(2001).
26. EHRNSTEN U., AALTONEN P.A., NENONEN P., HANNINEN H.E., JANSSON C., ANGELIU T.M., “Intergranular cracking of AISI 316NG stainless steel in BWR environment,” Environmental Degradation of Materials in Nuclear Power Systems — Water Reactors (Proc. 10th Int. Conf. Lake Tahoe NV, 2001) NACE (2001).
27. William D. Callister, JR, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION 5th ed, chapter 6, JOHN WILEY.
28. 黃冠儒, 高溫純水中82合金與304低碳不銹鋼異材銲件之應力腐蝕研究, 清華大學碩士論文,2007。
29. William D. Callister, JR, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION 5th ed, chapter 8, JOHN WILEY.
30. A. DI SCHINO, J. M. KENNY, Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels, journal of materials science letter,2002.
31. 簡源進, 氧化鋯被覆與不同304不銹鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器中的電化學特性影響研究, 清華大學碩士論文。
32. 吳柏毅, 高溫純水中過氧化氫於氧化鋯被覆304不銹鋼表面之電化學行為分析, 清華大學碩士論文。
33. P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data”, Corrosion /99, paper no. 145, Houston, TX,NACE International, (1999).
34. Vikram N. Shah, P.E. Macdonald,eds , Aging and Life Extension of Major LWR Components, Elsevier ;1993
35. H. S. Kwon, A. Wuensche, and D.D. Macdonald, Effects of flow Rate on Crack Growth in Sensitized Type 304 Stainless Steel in High – Temperature Aqueous Solutions, Corrosion, 2000-Vol.56, No.5.
36. 莊東漢, 材料破損分析, 五南圖書, 2007。
37. Russell H. Jones, Stress corrosion cracking, ASM international, 1992.
38. H. H. Uhlig, Physical metallurgy of stress corrosion fracture, interscience, 1959.
39. 劉松柏, 材料強度破壞學, 成璟文化, 2000。
40. Herbert H. Uhlig & R. Winston Revie , Corrosion and Corrosion Control, Chapter 7.
41. E. N. Pugh, International conference on stress corrosion cracking and hydrogen embrittlement of iron base alloys, pp.12-16, 1973.
42. P. Ford et al., “Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288℃ Water”, Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1988.
43. F. P. Ford et al., “Stress Corrosion Cracking of Low Alloy Steels under BWRConditions; Assessment of CHR Algorithms”, 9th International Symposium onEnvironmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1999
44. Hugh L. Logan, Film-rupture Mechanism of stress corrosion, Journal of Research of the National Bureau of Standards, Vol. 48, No. 2, 1952.
45. P. L. Andresen and F. P. Ford, Life Prediction y Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron and Nickel Alloys in Aqueous Systems, Materials Science and Engineering, 1988, pp.167-184.
46. F. P. Ford, Mechanisms of Environmental Cracking Perticular to the Power Generation Industry, Report NP2589, EPRI, 1982.
47. Thomas M. Angeliu, P. L. Andresen et al, “Applying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments”, CORROSION/98, paper No. 262, Houston, TX, NACE International, (1998).
48. 徐堅, 金屬的應力腐蝕斷裂(下), 化工部設備設計技術中心站, 1980。
49. J. M. Silcock and P. R. Swann, Environment-sensitive fracture of engineering, The Metallurgical Society, pp139 ,1979.
50. 蔡曜隆, 焊道溫度與應力分析實驗, 國立交通大學機械工程研究所碩士論文, 2001
51. K. Masubuchi, 1980Analysis of Welded Structures: Residual Stress, Distortion, and their Concequences, Pergamon Press Ltd, London.
52. 反應堆材料學, 楊文斗, 原子能出版社
53. Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999
54. P. Chung, “Quantitative Study of the Degree of Sensitization of Austenitic Steel by Electrochemical Measurements, ” M. S. Theses , the Ohio State Uni , 1979
55. Renate Cold work Workshop, Toronto, 2007.
56. S. M. Bruemmer, Compositional-Based Correlations to Predict Sensitizatio Resistance of Austrinic Stainless Steels, Corrosion, 42(1):27-35 (1986).
57. R. J. Bendure, L. C. Ikenberry, and J. H. Waxweiler, Quantity and form of carbides in austenitic and precipitation hardening stainless steels, Trans. AIME 221:1032-1039 (1961).
58. R. Stickler and A. Vinckier, Morphology of grain- boundary carbides and its influence on intergranular corrosion of 304 stainless steel, Trans. ASM 54: 362-380 (1961).
59. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International.
60. Corrosion of Weldments ,A.Wahid、D.L. Olson and D.K. Matlock,ASM Handbook,Vol. 6
61. J.T. Busby, G.S. Was, E.A. Kenik , “Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels,” Journal of Nuclear Materials 302 (2002) 20–40
62. N. Saito et al, “Variation of Slow Strain Rate Test Fracture Mode of Type 304L Stainless Steel in 288℃ Water,” Corrosion(2000)-Vol.56, No.1, pp.57-69.
63. MAMORU HISHIDA, HIROSHI NAKADA, Constant Strain Rate Testing of Type 304 Stainless Steel in High Temperature Water – Part Π : An Investigation Chloride Effect on Stress Corrosion Cracking, Corrosion-Nace, 1977-Vol.33, No.11, pp.403-407.
64. P. L. Andresen, D. J. Dequette, Corrosion, Vol.36, No.2,pp85-93.
65. W. E. Ruther, W. K. Soppet, T. F. Kassner, Corrosion , Vol.44, 1988,p.791.
66. BWRVIP-186: Effect of Water Chemistry and Temperature Transients on the IGSCC Growth Rates in BWR Components. EPRI, Palo Alto, CA: 2008. 1016485.
67. P. L. Andersen, Crack Initiation in CERT Tests on Type 304 Stainless Steel in Pure Water, Corrosion-Nace, 1982-Vol.38, No.1, pp.53-59.
68. T. Haruna, S. Zhang, and T. Shibata, Analysis of Initiation and Propagation of Stress Corrosion Cracks in Sensitized Type 304 Stainless Steel in High – Temperature Water, Corrosion, 2004-Vol.60,No.12 ,pp.1105-1112.
69. H. S. Kwon, A. Wuensche, and D.D. Macdonald, Effects of flow Rate on Crack Growth in Sensitized Type 304 Stainless Steel in High – Temperature Aqueous Solutions, Corrosion, 2000-Vol.56, No.5.
70. G. A. Fuller, D. D. Macdonald, The effect of Fluid Flow on the Stress Corrosioon Cracking of AISI 304 Stainless Steel in 0.01M Na2SO4 Solution at 280℃, Corrosion, 1984-Vol.40,No.9.
71. P. L. Andresen, C. L. Briant, Corrosion, Vol.45, No.6, pp.448-463(1989)
72. C. L. Briant, Metall. Trans. A, Vol.16A, pp.2061-2062, 1985.
73. C. L. Briant, P. L. Andresen, Metall. Trans. A, Vol.19A, pp.495-504, 1988.
74. A. J. Jacobs, Grain-Boundary Segregation and IGSCC in Cold-Worked Type 304SS, Corrosion, pp.30-37, 1990.
75. R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7 , BNES, Bournemouth England, Oct. 13-17 , 1996 , p. 196.
76. L. F. Lin, C. Y. Chao, and D. D. Macdonald, “ A Point Defect Model for Anodic Passive Films,” J. Electrochem. Soc, Vol.128, No.6,June 1981.
77. D. D. Macdonald et al., "Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments," Corrosion, Vol. 52, p. 768-785 (1996).
78. E. C. Bain, R. H. Aborn and J.J. B. Rutherford, Transactions of the American Society for Steel Treating 21, 1933.
79. J. S. Armijo, “Impurity Adsorption and Intergranular Corrosion of Austenitic Stainless Steel in Boiling HNO3-K2Cr2O7 Solutions”, Corrosion Science, Vol.7, pp.143-150, 1967.
80. J. S. Armijo, “Intergranular Corrosion of Nonsensitized Austenitic Stainless Steels”, Corrosion Science., Vol.24, pp.24-30, 1984.
81. W. F. Savage, New Insight into Weld Cracking and a New Way of Looking at Welds, Weld. Des. Eng.,1969.
82. W. A. Baeslack III, J. C. Lippold, and W. F. Savage, Unmixed Zone Formation in Austenitic Stainless Steel Weldment, Weld. J., Vol.58,pp.168-179, 1979.
83. K. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworths, 1983.
84. S. Liu, Weldability of Steels, Center for Welding and Joining Research.
85. Metal Handbook, Vol.7, 8th Ed, American Society for Metals, 1972, p.135.
86. Changheui Jang, Jounghoon Lee, Jong Sung Kim, Tae Eun Jin, Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel, International Journal of Pressure Vessels and Piping, 2008, pp.635–646.
87. Celik A, Asaran A. Mechanical and structural properties of similarand dissimilar steel joints, Mater Charact, 1999.
88. M. Sireesha , V. Shankar , Shaju K. Albert , S. Sundaresan, Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800, Materials Science and Engineering A292 (2000) 74–82.
89. M. Sireesha, S.K. Albert, V. Shankar, S. Sundaresan, A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800, J. NuclearMater. 279 (2000) pp.65-76.
90. RAMAZAN YILMAZ and HÜSEYİN UZUN, MECHANICAL PROPERTIES OF AUSTENITIC STAINLESS STEELS WELDED BY GMAW AND GTAW, Journal of Marmara for Pure and Applied Sciences, 18 (2002) 97-113.
91. N. S. TSAI and T. W. EAGAR, The Size of the Sensitization Zone in 304 Stainless Steel Welds, J. Materials for Energy System, 1984.
92. M. Akashi, T. Kawamoto: "Stress Corrosion Cracking Susceptibility of Various Stainless Steels in Oxygenated High Temperature Water," IHI Engineering Review, 11, pp. 8-15 (1978).
93. F. Umemura, M. Akashi, T. Kawamoto: "Evaluation of IGSCC Susceptibility of Austenitic Stainless Steels Using Electrochemical Reactivation Method," Corros. Eng. (Jpn.), 29, pp. 163-169 (1980).
94. KANAZAWA Y., TSUBOTA M., Stress corrosion cracking of cold worked stainless steel in high temperature water, Corrosion 94, Paper No. 237, (1994).
95. KILIAN R., BRŰMMER G., ILG U., MAIER V., TEICHMANN H., WACHTER O., “Characterization of sensitization and stress corrosion behavior of stabilized stainless steels under BWR conditions,” Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, (Proc. 7th Int. Symp. Breckenridge, CO, USA, 1995) Minerals Metals and Materials Society, Curran Associates, Inc. (1995).
96. HOFFMANN H., ILG U., KŐNIG G., MAYINGER W., NAGEL G., SCHŰMANN D., WIDERA M., “Das Integritätskonzept für Rohrleitungen sowie Leck- und Bruchpostulate in deutschen Kernkraftwerken,” “Integrity Concept for Piping Systems with Corresponding Leak and Break Postulates in German Nuclear Power Plants,” VGB PowerTech (87) 7/2007, 78-91, Special Print with English translation.
97. MATSUMOTO J., Core shroud replacement of Fukushima-Daiichi unit #3, Nucl. Eng. and Des. 191 (1991) 167–175.
98. Mars G. Fontana, Corrosion Engineering 3th, McGRAW-HILL Book Company, 1987, pp.85.
99. Kazushige ISHIDA et al., “Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation”, Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 43, No. 3, p. 242–254 (2006)
100. ANDRESEN P.L., Emerging issues and fundamental processes in environmental cracking in hot water, Corrosion 64 (5) (2008) 439–464.
101. 江佳應, 沸水式反應器於加氫水化學狀態下實施催化性與抑制性被覆之防蝕效益研究, 清華大學碩士論文, 2005。
102. E. Kikuchi, M. Itow, J. Kuniya, H. Sakamoto, M. Yamamoto, A. Sudo, S. Suzuki, and M. Kitamura, Intergranular Stress Corrosion Crack Growth of Sensitized Type 304 Stainless Steel in a Simulated Boiling-Water Reactor Environment, Corrosion, Vol.53, No.4, 1997.
103. COWAN R. L., et al, “Optimizing water chemistry in US boiling water reactors,” Power Plant Chemistry (Proc. Conf. Essen, Germany, 1994) (1994).
104. B. Stellwag, M. Lasch, and U. Staudt ,”Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants ," 1998 JAIF Conference, p186-193.
105. R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry”, Nuclear Energy, 36, No.4, p.257, 1997.
106. R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
107. Yoichi Wada, Kazushige Ishida, and Masahiko Tachibana,” Effectiveness Analysis of Noble Metal Treatment to Mitigation of Intergranular Stress Corrosion Cracking of Stainless Steel in BWR Reactor Water Environment”, 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, Aug. 10-14, 2003.
108. Y.J. Kim, P. L. Andresen, ” Transformation Kinetics of Oxide Formed on Noble Metal-Treated Type 304 Stainless Steel in 288°C Water”, Corrosion, Vol. 59, No.6, p. 511-519 (2003).
109. S. Hettiarachchi, R.J. Law, T.P. DiaZ, R.L. Cowan, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1014, p.535(1997)
110. K. Keith et al, NobleChem Reapplication at Duane Arnold", 2000 BWR Chemistry and Materials Workshop 14 - GE Proprietary.
111. Kaesche, H., Die Korrosion der Metalle: Phys-Chem. Prinzipien une aktuelle Probleme, 3rd edn. Springer-Verlag, Berlin, 1990.
112. Sato, N. and Okamoto, G. , Electrochemical Passivation of Metals, in Comprehensive Treatise of Electrochemistry, Vol. 4, Electrochemical Materials Science, ed. New York and London, 1981, pp. 193-245.
113. McBee, C.L. and Kruger, J. Electrochim. Acta, 1972, 17, 1337-1341
114. Winkler, R., Htittner, F. and Michel, F. VGB Kraftwerkstechnik, 1989, 69, 527-531.
115. Y.J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion Vol. 55, No.1, January 1999.
116. Young-Jin Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water” International Water Chemistry Conference, San Francisco, October 2004.
117. S. Uchida et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless in High Temperature Water, (V) Characterization of Oxide Film on Stainless Steel by multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.11, p.1199-1206(2002).
118. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses ,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.2, p.233-241(2005).
119. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.8, p.884-895(2006).
120. R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.
121. Dibyendu Ganguli and Debtosh Kundu, Central Glass and Ceramic Research Institute, India, “Preparation of amorphous ZrO2 coatings form metal-organic solutions,” Journal of Materials Science Letters, 3(1984)503-504.
122. Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," Corrosion, Vol. 54, No.12, p. 1012-1017 (1998).
123. X. Zhou, I. Balachov and D. D. Macdonald, ”The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304 SS in High Temperature Dilute Sodium Sulfate Solution, ”Corrosion Science. Vol.40 No.8 pp. 1349-1362.
124. Z. F. Zhou, E. Chalkova, S. N. Lvov, P. Chou, R. Pathania , ”Development of a hydrothermal deposition for applying zirconia coationgs on BWR materials for IGSCC mitigation, ” Corrosion Science 49 (2007) 830-843.
125. Tsung-Kuang YEH1, Ming-Yong LEE and Chuen-Horng TSAI, ” Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels Treated with Inhibitive Chemicals in Simulated Boiling Water Reactor Environments, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.5, p.531-539(2002).
126. Tsung-Kuang YEH, Chang-Tong LIU and Chuen-Horng TSAI, ” The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogen on Type 304 Stainless Steels in High Temperature Water, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.9, p.809-815(2005).
127. Tsung-Kuang YEH, Chuen-Horng TSAI and Yu-Hsiang CHENG, ” The Influence of Dissolved Hydrogen on the Corrosion of Type 304 Stainless Steels Treated with Inhibitive Chemicals in High Temperature Pure Water, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.5, p.462-469(2005).
128. Tsung-Kuang Yeh, Yuan-Chin Chien, Bai-Young Wang, Chuen-Horng Tsai, ” Electrochemical Characteristics of Zirconium Oxide Treated Type 304 Stainless
Steels of Different Surface Oxide Structures in High Temperature Water,” Corrosion Science (2008),pp.2327-2337.
129. M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” Journal of Non-Crystalline Solids 147&148(1992)813-819.
130. Z. F. Zhou et al, “ Optimization of Zirconium Oxide Coating Technology to Mitigate IGSCC in BWRs,” Final Report , BWRVIP-109, EPRI , November, 2002.
131. B. Stellwag and R. Kilian, Siemens Nuclear Power GmbH U.Staudt, VGB Germany “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,” 3rd Workshop on LWR Coolant Water Radiolysis and Electrochemistry.
132. Z. F. Zhou et al, “Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation,” Corrosion Science 49(2007),p.830-843
133. R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, 1997, EPRI.
134. X. Zhou, I. Balachov and D. D. Macdonald, ”The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304 SS in High Temperature Dilute Sodium Sulfate Solution, ”Corrosion Science. Vol.40 No.8 pp. 1349-1362(1998).
135. 王百揚, 不同抑制性被覆條件之敏化304不銹鋼在高溫純水環境中的電化學行為研究, 清華大學碩士論文, 2005。
136. 鄭力行, 動態氧化鋯被覆處理之敏化304不銹鋼於高溫純水環境之沿晶應力腐蝕裂縫成長速率研究, 清華大學碩士論文, 2005。
137. P. Jayaweeraa, S. Hettiarachchi,“Determination of the high temperature zeta potential and pH of zero charge of some transition metal oxides”Colloids trnd Swfaces A: Physicochemical and Engineering Aspects, 85 (1994), p.19-27.
138. Z. F. Zhou et al, “Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation,” Corrosion Science Vol.49,p.830-843(2007)
139. 陳長有、許禎祥、許振聲、陳柏宜, 機械材料實驗第三版, 全華圖書股份有限公司, 2010。
140. 喬利杰, 應力腐蝕機理, 科學出版社, 1993
141. ASTM Standard A-262
142. A. P. Majidi, M. A. Streicher, Correlation of SL–EPR, oxalic acid test, and ferric sulfate test for AISI 304 and 304L stainless steel Corrosion, Vol. 40, No. 8, p.393(1984)
143. Fumio Umemura, Masatsune Akashi, and Teruaki Kawamoto, Evaluation of IGSCC Susceptibility of Austenitic Stainless Steels Using Electrochemical Reactivation Method, 防蝕技術, 29, 163-169(1980)
144. Azar P et al., “The Double Reactivation Method for Dectecting Sensitization in AISI 304 Stainless Steels,” Corrosion, Vol. 40, No. 11 p.584-594 (1984).
145. ASTM Standard G-129
146. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution, Z.Y. Liu X.G. Li C.W. Du Y.F. Cheng, Corrosion Science, Vol. 51, p.2863–2871, December 2009.
147. ASTM Standard E-384
148. ASTM Standard E-837
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *