帳號:guest(34.205.246.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張展豪
作者(外文):Chang, Jan Hau
論文名稱(中文):氧化鋅奈米線於光觸媒應用
論文名稱(外文):Application of ZnO Nanowires in Photocatalysis
指導教授(中文):林鶴南
口試委員(中文):李紫原
許鉦宗
吳志明
吳文偉
林鶴南
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9831840
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:74
中文關鍵詞:ZnONanowiresPhotocatalyticNanocrystalline materialsPiezoelectricityPhotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:391
  • 評分評分:*****
  • 下載下載:37
  • 收藏收藏:0
本論文研究基板承載氧化鋅奈米線的光觸媒現象及增強效率之方法。論文中所使用的氧化鋅奈米線是利用無催化劑的熱蒸鍍成長法而得,而氧化鋅奈米線之光觸媒效率是利用氧化鋅奈米線照射紫外光分解50 uM羅丹明B(rhodamine B)進行評估。
在論文的第一部分,主要著重於基板導電性與奈米線結構缺陷對於光觸媒效率的影響。研究中發現,成長在導電性基板與內部缺陷較少之氧化鋅奈米線,其光觸媒效率可以有效增強。
在論文第二部份,氧化鋅奈米線的光催化動力學研究中可發現,分解50 M羅丹明B的光觸媒反應涉及零階與一階動力學機制,其機制轉變點發生在羅丹明B之濃度被分解低於10 uM的時候。未表面改質氧化鋅奈米線之反應常數分別為0.58 uMmin-1 (零階反應常數)與0.028 min-1(一階反應常數),此光觸媒效率比其他文獻中成長條件相當的氧化鋅奈米線還要更好。
在論文第三部份,成功結合了氧化鋅奈米線的壓電性質與光觸媒性質。其中藉由製程方法不同可合成出無彎曲與彎曲之銀粒子改質氧化鋅奈米線。其光觸媒效率實驗中發現,比較其零階反應常數,彎曲之銀粒子改質氧化鋅奈米線光觸媒效率為無彎曲之銀粒子改質氧化鋅奈米線的1.4倍,並且為未改質氧化鋅奈米線的2.2倍。光觸媒效率之增強,主要原因是彎曲之氧化鋅奈米線可以產生內建電場,因而降低載子的再結合率。
在論文最後部分,利用氫處理的氧化鋅奈米線可增強光觸媒效率。於光致發光光譜(PL)實驗中可以得知,氫處理後氧化鋅奈米線的氧空缺濃度降低,因而減少載子的再結合率。而光觸媒效率實驗中,氫處理後之氧化鋅奈米線的零階反應常數為未氫處理之氧化鋅奈米線的2.5倍。
This thesis aims to investigate approaches to enhance the photocatalytic activity of substrate-supported ZnO nanowires (NWs). The employed NWs are grown on various substrates by thermal evaporation and have similar surface area. The NW photocatalytic activity is evaluated by degrading 50 uM rhodamine B with the use of UV light.
These results in the first part of thesis reveal that the photocatalytic activity can be enhanced by using a conductive substrate and NWs with less defects.
In the second part of thesis, the degradation kinetics has also been analyzed and indicates a combined zeroth-order and first-order reaction with a threshold concentration of 10 uM. The degradation constants of as-grown ZnO NWs are 0.58 uMmin-1 (zeroth-order) and 0.028 min-1 (first-order) and outperform reported values obtained from similar NWs.
In the third part of thesis is for an investigation of the photocatalytic activity of substrate-supported ZnO nanowires with Ag modification and induced bending. By degrading a 50 uM rhodamine B solution, it is found that the zeroth-order kinetic constant of Ag modified bent NWs is 1.4 and 2.2 times as high as that of Ag modified unbent NWs and unmodified as-grown NWs, respectively. The improvement due to bending is related to the piezoelectric property of ZnO that facilitates charge separation. This work demonstrates the usefulness of piezoelectricity for photocatalysis.
In the last part of the thesis, the photocatalytic activity of hydrogenated ZnO NWs is studied. Also, by degrading a 50 uM rhodamine B solution, it is found that the zeroth-order constant of hydrogenated ZnO NWs is around 2.5 times as high as that of as-grown ZnO NWs and the advantage of a low density of oxygen vacancies in ZnO NWs is apparent. Consequently, hydrogenated ZnO NWs enhance the photocatalytic activity significantly.
Table of Contents
List of Figures
List of Tables
List of Abbreviations
Acknowledgments
中文摘要
Abstract
Chapter 1 Introduction
1.1 Zinc Oxide
1.2 Advantages of ZnO Nanowires for Pollutant Photodegradation
1.3 Photocatalytic Reaction
1.4 Motivation and Scope of the Thesis
Chapter 2 Literature Review
2.1 Photocatalyst Materials
2.2 Photocatalytic Activity of TiO2
2.3 Photocatalytic Activity of ZnO
2.4 Enhanced Photocatalysis Activity of ZnO Nanomaterials
2.5 Piezoelectric Nature of ZnO
2.6 Bent ZnO Nanowires and Synthesis
Chapter 3 Experimental Procedure
3.1 Growth of ZnO Nanowires
3.2 Preparation of Ag Modified and Bent ZnO Nanowires
3.3 List of Chemicals
3.4 Characterization and Instrument
3.4.1 Energy-Dispersive X-ray Spectroscope
3.4.2 Optical Microscope Equipped with a Fiber-connected Spectrometer
3.4.3 Photoluminescence
3.4.4 Scanning Electron Microscope
3.4.5 High Resolution Transmission Electron Microscope
3.5 Photodegradation Measurement
Chapter 4 Photocatalytic Activity of ZnO Nanowires
4.1 ZnO Nanowire Growth on Different Substrates
4.2 Effect of Excitation Photon Energy
4.3 Effect of Substrate
4.4 Effect of Structural Defects
Chapter 5 Photodegradation Kinetics
5.1 Zeroth-order and First-order Kinetics
5.2 Concentration-depended Photocatalytic Activity
Chapter 6 ZnO Nanowires with Ag Modification and Induced Bending
6.1 ZnO Nanowires Morphology
6.2 Photoluminescence
6.3 Photocatalytic Performance
Chapter 7 Hydrogenated ZnO Nanowires
7.1 ZnO Nanowires Hydrogenation and Morphology
7.2 Photoluminescence
7.3 Photocatalytic Performance
Chapter 8 Conclusions
References


1. M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V. Pisarev, D. R. Yakovlev, A. Bakin and M. Bayer, Physical Review B, 2013, 88, 235207.
2. M. M. Rahman, M. K. R. Khan, M. R. Islam, M. A. Halim, M. Shahjahan, M. A. Hakim, D. K. Saha and J. U. Khan, Journal of Materials Science & Technology, 2012, 28, 329335.
3. H. Sheng, N. W. Emanetoglu, S. Muthukumar, S. Feng and Y. Lu, Journal of Electronic Materials, 2002, 31, 811814.
4. M. Ghosh and A. K. Raychaudhuri, Nanotechnology, 2007, 18, 115618.
5. M. Dvorak, S. H. Wei and Z. G. Wu, Physical Review Letters, 2013, 110, 016402.
6. T. P. Chou, Q. F. Zhang, G. E. Fryxell and G. Z. Cao, Advanced Materials, 2007, 19, 25882592.
7. Z. Li, R. S. Yang, M. Yu, F. Bai, C. Li and Z. L. Wang, Journal of Physical Chemistry C, 2008, 112, 2011420117.
8. L. Taccola, V. Raffa, C. Riggio, O. Vittorio, M. C. Iorio, R. Vanacore, A. Pietrabissa and A. Cuschieri, International Journal of Nanomedicine, 2011, 6, 11291140.
9. H. M. Xiong, Advanced Materials, 2013, 25, 53295335.
10. S. Sudhagar, S. Sathya, K. Pandian and B. S. Lakshmi, Biotechnology Letters, 2011, 33, 18911896.
11. C. C. Chen, W. H. Ma and J. C. Zhao, Chemical Society Reviews, 2010, 39, 42064219.
12. U. I. Gaya and A. H. Abdullah, Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2008, 9, 112.
13. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chemical Reviews, 1995, 95, 6996.
14. M. A. Behnajady, N. Modirshahla and R. Hamzavi, Journal of Hazardous Materials, 2006, 133, 226232.
15. Y. A. Chung, Y. C. Chang, M. Y. Lu, C. Y. Wang and L. J. Chen, Journal of the Electrochemical Society, 2009, 156, F75F79.
16. M. Y. Guo, A. M. C. Ng, F. Z. Liu, A. B. Djurišić, W. K. Chan, H. M. Su and K. S. Wong, Journal of Physical Chemistry C, 2011, 115, 1109511101.
17. B. X. Li and Y. F. Wang, Journal of Physical Chemistry C, 2010, 114, 890896.
18. Q. Y. Li, C. L. Wang, M. L. Ju, W. L. Chen and E. B. Wang, Microporous and Mesoporous Materials, 2011, 138, 132139.
19. D. Mijin, M. Savić, P. Snežana, A. Smijanić, O. Glavaški, M. Jovanović, S. Petrović, Desalination, 2009, 249, 286292.
20. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Solar Energy Materials and Solar Cells, 2003, 77, 6582.
21. C. G. Tian, W. Li, K. Pan, Q. Zhang, G. H. Tian, W. Zhou and H. G. Fu, Journal of Solid State Chemistry, 2010, 183, 27202725.
22. K. Vinodgopal and P. V. Kamat, Journal of Physical Chemistry, 1992, 96, 50535059.
23. M. Y. Guo, M. K. Fung, F. Fang, X. Y. Chen, A. M. C. Ng, A. B. Djurišić and W. K. Chan, Journal of Alloys and Compounds, 2011, 509, 13281332.
24. G. Wang, D. Chen, H. Zhang, J. Z. Zhang and J. H. Li, Journal of Physical Chemistry C, 2008, 112, 88508855.
25. V. R. Shinde, T. P. Gujar, T. Noda, D. Fujita, A. Vinu, M. Grandcolas and J. H. Ye, Chemistry-A European Journal, 2010, 16, 1056910575.
26. T. J. Kuo, C. N. Lin, C. L. Kuo and M. H. Huang, Chemistry of Materials, 2007, 19, 51435147.
27. X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang and L. H. Lu, Journal of Materials Chemistry, 2009, 19, 55475553.
28. D. Deng, S. T. Martin and S. Ramanathan, Nanoscale, 2010, 2, 26852691.
29. Y. X. Wang, X. Y. Li, G. Lu, X. Quan and G. H. Chen, Journal of Physical Chemistry C, 2008, 112, 73327336.
30. Y. Liu, Z. H. Kang, Z. H. Chen, I. Shafiq, J. A. Zapien, I. Bello, W. J. Zhang and S. T. Lee, Crystal Growth & Design, 2009, 9, 32223227.
31. D. W. Chu, Y. Masuda, T. Ohji and K. Kato, Langmuir, 2010, 26, 28112815.
32. J. Bae, J. Bin Han, X. M. Zhang, M. Wei, X. Duan, Y. Zhang and Z. L. Wang, Journal of Physical Chemistry C, 2009, 113, 1037910383.
33. R. W. Matthews, Solar Energy, 1987, 38, 405413.
34. T. Ohno, T. Mitsui and M. Matsumura, Chemistry Letters, 2003, 32, 364365.
35. R. Ullah and J. Dutta, Journal of Hazardous Materials, 2008, 156, 194200.
36. K. Suzuki, Photocatalytic air purification on TiO2 coated honeycomb support, Elsevier Science Publ B V, Amsterdam, 1993.
37. S. Hager and R. Bauer, Chemosphere, 1999, 38, 15491559.
38. Y. J. Wang, R. Shi, J. Lin and Y. F. Zhu, Energy & Environmental Science, 2011, 4, 29222929.
39. S. H. Shen, J. W. Shi, P. H. Guo and L. J. Guo, International Journal of Nanotechnology, 2011, 8, 523591.
40. R. Selvin, H. L. Hsu, N. S. Arul and S. Mathew, Science of Advanced Materials, 2010, 2, 5863.
41. J. H. Kim, K. T. Hwang, U. S. Kim and Y. M. Kang, Ceramics International, 2012, 38, 39013906.
42. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 293, 269271.
43. S. Chakrabarti and B. K. Dutta, Journal of Hazardous Materials, 2004, 112, 269278.
44. S. S. Wu, H. Q. Cao, S. F. Yin, X. W. Liu and X. R. Zhang, Journal of Physical Chemistry C, 2009, 113, 1789317898.
45. D. Chen and J. H. Ye, Advanced Functional Materials, 2008, 18, 19221928.
46. X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang and C. Li, Journal of the American Chemical Society, 2008, 130, 71767177.
47. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan and C. L. Bai, Angewandte Chemie-International Edition, 2005, 44, 12691273.
48. X. Zong, J. F. Han, G. J. Ma, H. J. Yan, G. P. Wu and C. Li, Journal of Physical Chemistry C, 2011, 115, 1220212208.
49. M. Li, J. Y. Zhang, W. Q. Dang, S. K. Cushing, D. Guo, N. Q. Wu and P. G. Yin, Physical Chemistry Chemical Physics, 2013, 15, 1622016226.
50. B. Divband, M. Khatamian, G. R. K. Eslamian and M. Darbandi, Applied Surface Science, 2013, 284, 8086.
51. D. D. Lin, H. Wu, R. Zhang and W. Pan, Chemistry of Materials, 2009, 21, 34793484.
52. M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong and P. Praserthdam, Applied Catalysis B-Environmental, 2006, 63, 305312.
53. R. Georgekutty, M. K. Seery and S. C. Pillai, Journal of Physical Chemistry C, 2008, 112, 1356313570.
54. T. Yamaki, T. Sumita and S. Yamamoto, Journal of Materials Science Letters, 2002, 21, 3335.
55. Y. M. Wu, M. Y. Xing, J. L. Zhang and F. Chen, Applied Catalysis B-Environmental, 2010, 97, 182189.
56. X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal and K. Klabunde, Journal of Catalysis, 2007, 252, 296302.
57. S. Anandan, T. N. Rao, R. Gopalan and Y. Ikuma, Journal of Nanoscience and Nanotechnology, 2014, 14, 31813186.
58. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Applied Physics Letters, 2002, 81, 454456.
59. J. F. Zhu, Z. G. Deng, F. Chen, J. L. Zhang, H. J. Chen, M. Anpo, J. Z. Huang and L. Z. Zhang, Applied Catalysis B-Environmental, 2006, 62, 329335.
60. M. H. Zhou, J. G. Yu and B. Cheng, Journal of Hazardous Materials, 2006, 137, 18381847.
61. R. Mohan, K. Krishnamoorthy and S. J. Kim, Solid State Communications, 2012, 152, 375380.
62. J. B. Zhong, J. Z. Li, X. Y. He, J. Zeng, Y. Lu, W. Hu and K. Lin, Current Applied Physics, 2012, 12, 9981001.
63. H. G. Yu, J. G. Yu, S. W. Liu and S. Mann, Chemistry of Materials, 2007, 19, 43274334.
64. K. Woan, G. Pyrgiotakis and W. Sigmund, Advanced Materials, 2009, 21, 22332239.
65. M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai and Y. H. Wu, Journal of Physical Chemistry B, 2006, 110, 2021120216.
66. T. Hirakawa and P. V. Kamat, Journal of the American Chemical Society, 2005, 127, 39283934.
67. R. Beranek, Advances in Physical Chemistry, 2011, 2011, 786759.
68. M. Gratzel, Nature, 2001, 414, 338344.
69. V. Artero, M. Chavarot-Kerlidou and M. Fontecave, Angewandte Chemie-International Edition, 2011, 50, 72387266.
70. A. Kudo, Pure and Applied Chemistry, 2007, 79, 19171927.
71. J. Kubota and K. Domen, The Electrochemical Society Interface, Summer 2013, 22, 5762.
72. N. Myung, S. Choi, W. Lee, S. Jeong and K. Rajeshwar, ECS Electrochemistry Letters, 2013, 2, D33D36.
73. J. Hensel, G. M. Wang, Y. Li and J. Z. Zhang, Nano Letters, 2010, 10, 478483.
74. Y. Bessekhouad, D. Robert and J. Weber, Journal of Photochemistry and Photobiology A-Chemistry, 2004, 163, 569580.
75. Y. Bessekhouad, D. Robert and J. V. Weber, Catalysis Today, 2005, 101, 315321.
76. S. Kandula and P. Jeevanandam, Journal of Nanoparticle Research, 2014, 16, 2452.
77. R. Saravanan, H. Shankar, T. Prakash, V. Narayanan and A. Stephen, Materials Chemistry and Physics, 2011, 125, 277280.
78. C. J. Wang, M. Shim and P. Guyot-Sionnest, Science, 2001, 291, 23902392.
79. X. J. Wu, F. Z. Meng, Z. Z. Zhang, Y. N. Yu, X. J. Liu and J. Meng, Optics Express, 2014, 22, A735A741.
80. A. Fujishima and K. Honda, Nature, 1972, 238, 3738.
81. M. Barbeni, E. Pramauro, E. Pelizzetti, E. Borgarello, M. Gratzel and N. Serpone, Nouveau Journal De Chimie-New Journal of Chemistry, 1984, 8, 547550.
82. M. Barbeni, E. Pramauro, E. Pelizzetti, E. Borgarello and N. Serpone, Chemosphere, 1985, 14, 195208.
83. R. W. Matthews, Journal of Physical Chemistry, 1987, 91, 33283333.
84. R. W. Matthews, Journal of the Chemical Society-Faraday Transactions I, 1989, 85, 12911302.
85. D. F. Ollis, Abstracts of Papers of the American Chemical Society, 1993, 205, 59CATL.
86. A. Fujishima, X. T. Zhang and D. A. Tryk, Surface Science Reports, 2008, 63, 515582.
87. T. Ohno, K. Sarukawa, K. Tokieda and M. Matsumura, Journal of Catalysis, 2001, 203, 8286.
88. C. Pandiyarajan, A. Pandikumar and R. Ramaraj, Nanotechnology, 2013, 24, 435401.
89. H. M. Cheng and W. F. Hsieh, Energy & Environmental Science, 2010, 3, 442447.
90. N. Tétreault, E. Arsenault, L. P. Heiniger, N. Soheilnia, J. Brillet, T. Moehl, S. Zakeeruddin, G. A. Ozin and M. Gratzel, Nano Letters, 2011, 11, 45794584.
91. B. S. Shaheen, H. G. Salem, M. A. El-Sayed and N. K. Allam, Journal of Physical Chemistry C, 2013, 117, 1850218509.
92. E. Hendry, M. Koeberg, B. O'Regan and M. Bonn, Nano Letters, 2006, 6, 755759.
93. M. Breedon, M. B. Rahmani, S. H. Keshmiri, W. Wlodarski and K. Kalantar-Zadeh, Materials Letters, 2010, 64, 291294.
94. S. T. Ho, K. C. Chen, H. A. Chen, H. Y. Lin, C. Y. Cheng and H. N. Lin, Chemistry of Materials, 2007, 19, 40834086.
95. S. T. Ho, C. L. Hsiao, H. Y. Lin, H. A. Chen, C. Y. Wang and H. N. Lin, Journal of Nanoscience and Nanotechnology, 2010, 10, 64736478.
96. M. K. Patra, K. Manzoor, M. Manoth, S. R. Vadera and N. Kumar, Journal of Luminescence, 2008, 128, 267272.
97. L. K. Adams, D. Y. Lyon and P. J. J. Alvarez, Water Research, 2006, 40, 35273532.
98. S. Lan, L. Liu, R. Q. Li, Z. H. Leng and S. C. Gan, Industrial & Engineering Chemistry Research, 2014, 53, 31313139.
99. J. C. Wang, P. Liu, X. Z. Fu, Z. H. Li, W. Han and X. X. Wang, Langmuir, 2009, 25, 12181223.
100. Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu and Y. J. Zhu, Inorganic Chemistry, 2007, 46, 66756682.
101. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding and W. K. Ge, Journal of Physical Chemistry B, 2006, 110, 2086520871.
102. F. Lu, W. P. Cai and Y. G. Zhang, Advanced Functional Materials, 2008, 18, 10471056.
103. W. W. Lu, G. S. Liu, S. Y. Gao, S. T. Xing and J. J. Wang, Nanotechnology, 2008, 19, 445711.
104. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chemical Reviews, 1995, 95, 735758.
105. R. H. Wang, J. H. Xin, Y. Yang, H. F. Liu, L. M. Xu and J. H. Hu, Applied Surface Science, 2004, 227, 312317.
106. Q. L. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li and P. J. J. Alvarez, Water Research, 2008, 42, 45914602.
107. H. B. Zeng, P. S. Liu, W. P. Cai, S. K. Yang and X. X. Xu, Journal of Physical Chemistry C, 2008, 112, 1962019624.
108. P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, Catalysis Communications, 2009, 10, 13801385.
109. J. J. Wu and C. H. Tseng, Applied Catalysis B-Environmental, 2006, 66, 5157.
110. P. Li, Z. Wei, T. Wu, Q. Peng and Y. D. Li, Journal of the American Chemical Society, 2011, 133, 56605663.
111. M. Ahmad, Y. Y. Shi, A. Nisar, H. Y. Sun, W. C. Shen, M. Wei and J. Zhu, Journal of Materials Chemistry, 2011, 21, 77237729.
112. Q. Deng, X. W. Duan, D. H. L. Ng, H. B. Tang, Y. Yang, M. G. Kong, Z. K. Wu, W. P. Cai and G. Z. Wang, ACS Applied Materials & Interfaces, 2012, 4, 60306037.
113. T. J. Whang, M. T. Hsieh and H. H. Chen, Applied Surface Science, 2012, 258, 27962801.
114. K. Vanheusden, W. L. Warren, J. A. Voigt, C. H. Seager and D. R. Tallant, Applied Physics Letters, 1995, 67, 12801282.
115. Z. L. Wang, R. S. Yang, J. Zhou, Y. Qin, C. Xu, Y. F. Hu and S. Xu, Materials Science and Engineering R, 2010, 70, 320329.
116. M. Raula, M. H. Rashid, T. K. Paira, E. Dinda and T. K. Mandal, Langmuir, 2010, 26, 87698782.
117. Z. L. Wang and J. H. Song, Science, 2006, 312, 242246.
118. Z. L. Wang, Advanced Materials, 2012, 24, 46324646.
119. S. G. Xu, W. H. Guo, S. W. Du, M. M. T. Loy and N. Wang, Nano Letters, 2012, 12, 58025807.
120. J. H. Song, J. Zhou and Z. L. Wang, Nano Letters, 2006, 6, 16561662.
121. B. A. Buchine, W. L. Hughes, F. L. Degertekin and Z. L. Wang, Nano Letters, 2006, 6, 11551159.
122. W. L. Hughes and Z. L. Wang, Applied Physics Letters, 2003, 82, 28862888.
123. F. F. Zhang, X. L. Wang, S. Y. Ai, Z. D. Sun, Q. Wan, Z. Q. Zhu, Y. Z. Xian, L. T. Jin and K. Yamamoto, Analytica Chimica Acta, 2004, 519, 155160.
124. J. Z. Liu, S. N. Lee, K. M. Lee, Y. H. Ahn, J. Y. Park and K. H. Koh, Nanotechnology, 2008, 19, 185607.
125. X. D. Wang, C. J. Summers and Z. L. Wang, Applied Physics Letters, 2005, 86, 013111.
126. C. H. Lu, L. M. Qi, J. H. Yang, L. Tang, D. Y. Zhang and J. M. Ma, Chemical Communications, 2006, 33, 35513553.
127. S. T. Ho, C. Y. Wang, H. L. Liu and H. N. Lin, Chemical Physics Letters, 2008, 463, 141144.
128. R. Desikan, S. Armel, H. M. Meyer and T. Thundat, Nanotechnology, 2007, 18, 424028.
129. T. M. Williams, D. Hunter, A. K. Pradhan and I. V. Kityk, Applied Physics Letters, 2006, 89, 043116.
130. L. L. Xu, B. Wei, W. L. Liu, H. L. Zhang, C. Y. Su and J. X. Che, Nanoscale Research Letters, 2013, 8, 536.
131. J. H. Chang and H. N. Lin, Journal of Nanomaterials, 2014, 2014, 426457.
132. M. H. Du and K. Biswas, Physical Review Letters, 2011, 106, 115502.
133. A. Kushwaha and M. Aslam, Journal of Physics D-Applied Physics, 2013, 46, 485104.
134. X. H. Huang, C. B. Tay, Z. Y. Zhan, C. Zhang, L. X. Zheng, T. Venkatesan and S. J. Chua, Crystengcomm, 2011, 13, 70327036.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *