帳號:guest(35.153.170.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭明城
作者(外文):Hsiao, Ming Chen
論文名稱(中文):被動式輻射劑量計應用於強子治療之研究
論文名稱(外文):Passive Radiation Dosimeters Applied to Hadron Therapy
指導教授(中文):江祥輝
許榮鈞
指導教授(外文):Jiang, Shiang Huei
Sheu, Rong Jiun
口試委員(中文):徐椿壽
李宗其
劉鴻鳴
學位類別:博士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:9813801
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:167
中文關鍵詞:輻染膠片丙氨酸強子治療混合輻射場相對效應
外文關鍵詞:Radiochromic FilmAlanineHadron TherapyMixed Radiation FieldRelative Effectiveness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:176
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
輻染膠片和丙氨酸兩種被動式輻射劑量計已被廣泛例行用於醫療X光及加馬射線的光子輻射場劑量測量。本論文研究此兩種劑量計在次熱中子硼中子捕獲治療(BNCT)、質子治療和碳離子治療此三種強子治療射束的劑量測量。此兩種劑量計對於各種不同粒子的響應與光子相比均不相同,因此本論文重點即在探討這兩種劑量計對各種不同粒子與光子響應相較之相對效應(RE),使這兩種劑量計可用於各種不同強子治療射束場合並測得正確劑量值。
在次熱中子BNCT射束中,中子與劑量計作用會產生各種帶電粒子在劑量計中造成劑量,另外還有加馬射線與物質作用產生的電子亦會在劑量計中造成劑量,因此BNCT射束為一複雜的混合輻射場。本論文分別將輻染膠片與丙氨酸置於PMMA假體中,在本校清華水池式反應器(THOR)的次熱中子BNCT射束從事測量,並利用MCNPX蒙地卡羅程式執行計算,計算係利用已校正的中子監測系統和中子與加馬射線源項,將MCNPX計算而得的中子劑量和加馬射線劑量作為輔助,進而求得輻染膠片和丙氨酸劑量計在次熱中子BNCT射束之中子RE。
又因輻染膠片為一種二維劑量計,本論文於是將大張輻染膠片置於PMMA假體內,在THOR的次熱中子BNCT射束嘗試測量二維加馬射線劑量分布。中子對輻染膠片造成的劑量貢獻由下述三個步驟進行測定:首先係用銅片間接中子照相法(INR)結合影像板(IP)測量活化銅衰變輻射,取得二維之銅活度分布,接著利用MCNPX配合中子監測系統之讀數計算中子對輻染膠片軸線處所造成的劑量,最後則採用INR和IP所測得的二維銅活度分布將中子對輻染膠片軸線處所造成的劑量進行二維展開。將輻染膠片測得之二維光子等效劑量分布扣除經中子RE修正之中子劑量二維分布即得二維加馬劑量分布,其與MCNPX計算結果相比吻合情況良好。此外若次熱中子BNCT射束源頭之中子與加馬射源成份固定,則射束中中子和加馬射線通率之比例亦不致改變,因此輻染膠片所測得的光子等效劑量分布應可直接用於射束均勻度之品保作業。為此本論文亦嘗試制定品保測量可否通過之判定條件。
在質子和碳離子治療射束的測量中,本論文主要探討輻染膠片和丙氨酸在測量位置的RE。本論文首先由文獻回顧整理出這兩種劑量計對於質子、碳離子及其它粒子的RE隨粒子能量變化的函數,其中輻染膠片劑量計的粒子RE隨能量變化函數均來自測量結果,而丙氨酸數據則來自徑跡結構理論模式計算結果。由於此兩種劑量計對於各種粒子的RE均與粒子能量成依存關係,因此若要求得劑量計在測量位置的RE,必須先知道測量位置的粒子能量分布。本論文利用MCNPX計算兩種劑量計分別在粒子進入水中不同深度即布拉格曲線不同位置之粒子通率能量分布,再利用對應的RE能量函數,以劑量加權方式求出劑量計在該位置之RE。由於體外離子治療時均利用擴展布拉格峰(SOBP)區域劑量從事治療,因此本論文亦以MCNPX計算各種能量粒子在水中之布拉格曲線,並參考文獻模式求出各布拉格曲線之加權因數,相加後之布拉格曲線即為SOBP。SOBP區域內各位置之RE係利用各布拉格曲線上各位置之RE值求得。研究結果顯示在質子治療射束SOBP區域中,輻染膠片和丙氨酸劑量計之RE值幾乎均為定值,輻染膠片RE值約為0.96而丙氨酸RE值則趨近於1。碳離子治療射束在布拉格峰附近,除了碳離子外還會有相當數量的核反應碎片,其數量與入射碳離子能量及測量位置互成依存關係,因此需先獲得各種粒子的RE隨粒子能量的變化函數,再修正輻染膠片及丙氨酸在特定能量碳離子治療射束及特定位置產生的各種粒子RE後才可能正確測量劑量,惟如此將相當複雜而不易使用。
據此,本論文已研究上述兩種被動式輻射劑量計應用於三種強子治療射束之粒子RE,及其在強子治療射束場合的實際應用。
Two types of passive radiation dosimeters of the radiochromic film and the alanine have been extensively and regularly applying for dose measurements in photon fields of medical X-rays and gamma-rays. This dissertation studies these two passive dosimeters for dose measurement in therapeutic beams of boron neutron capture therapy (BNCT), proton therapy, and carbon ion therapy. Responses of these two dosimeters irradiated with various particles differ from their photon responses. Therefore, this dissertation mainly investigates the relative effectiveness (RE) values of these two dosimeters for various particles in relation to photons, so as to make these dosimeters be used for dose measurement in the context of hadron therapy.
In the epithermal neutron beam used for BNCT, the neutron dose to a dosimeter is induced by the charged particle emission of neutron reactions, and the gamma-ray dose to a dosimeter is also caused by electrons that are produced from photon interactions in a matter. The BNCT beam is therefore a complex mixed field. This dissertation places the radiochromic film and the alanine in a PMMA phantom irradiated with the BNCT beam at the Tsing Hua Open-pool Reactor (THOR) for dose measurement, and uses a Monte Carlo code of MCNPX to perform calculations. In order to make the calculated results an auxiliary, those calculations adapted a calibrated neutron monitor and the general source definitions of neutrons and gamma-rays to determine the neutron REs of both dosimeters for the BNCT beam.
Since the radiochromic film is a two-dimensional (2D) dosimeter, this dissertation places a large piece of film in the PMMA phantom to measure the 2D distributions of the gamma-ray dose component of the BNCT beam. Regarding the determination of the neutron dose to the film, it can be divided into three steps: first was to measure the disintegrated radiations of the activated copper using the combination of the indirect neutron radiography (INR) and the image plate (IP), to retrieve the 2D distributions of the radioactivity over the activated copper, then use both MCNPX and the readings of the neutron monitor to calculate the neutron doses to the films on the central axis; lastly, the results of INR plate measurements were applied to expand the neutron doses to the film over the film’s area. Subtract the 2D distributions of the neutron doses from those of the photon equivalent doses to have the 2D distributions of the gamma-ray doses to the films. The measured results were generally in a good agreement with the calculated results of MCNPX. Meanwhile, if the composition of the neutron and gamma-ray sources is constant in the BNCT beam, the fractions of neutron and gamma-ray fluxes would not vary too much. Thus the distributions of the photon equivalent doses measured using the radiochromic films can be directly applied to the quality assurance (QA) procedure of the beam uniformity of the beam line. This dissertation also attempts to set up the criterion for the QA measurement.
Of the measurements in therapeutic beams of proton therapy and carbon ion therapy, this dissertation mainly discusses the RE values of both dosimeters located at the measured positions. First was to review and conclude the RE functions of energy of both dosimeters for protons, carbon ions, and other particles. In which the RE functions of energy of the film for particles were originated from related experiments, while those of the alanine were modeled and calculated using the track structure theory. Because the REs of these two dosimeters for particles depend on particle energy; hence, in order to determine the RE of the dosimeter at a specific measured position, the energy distribution of a certain particle must be known. This dissertation uses MCNPX to calculate the energy distributions of particle fluxes at different positions along the Bragg curves. Then the RE of the dosimeter placed at the certain position can be determined by using the dose weighted method with the energy function of RE. Owing to that the external ion beam therapy utilizes the doses in the region of the spread-out Bragg peak (SOBP) to treat, this dissertation therefore uses MCNPX to calculate Bragg curves of multiple energies in liquid water, and generates several SOBPs by sets of weighting factors that were referred to a literature. The RE of dosimeters at each position in the SOBP region was determined using the RE distribution along each Bragg curve. Results showed that the proton REs of both the radiochromic film and the alanine dosimeter are fixed values, which are around 0.96 for the film and almost unity for the alanine. As for the measurement in therapeutic carbon ion beams, not only the carbon ions but the sufficient nuclear fragments are present in the vicinity of the Bragg peaks. The magnitude of fragments depends on the incident carbon ion energy and measured position, thus it has to acquire the RE functions of energy for multiple particles to correct the REs of both dosimeters for specific position and incident energy before these two dosimeters can be used to measure the delivered dose of carbon ion therapy. However, it is so complicated that the dose measurement using these dosimeters will not be viable.
Accordingly, this dissertation has studied the RE values and practical usages of the aforesaid passive dosimeters applied to three therapeutic beams of hadron therapy.
Chinese abstract............................................................................................................................i
Abstract......................................................................................................................................iii
Acknowledgements....................................................................................................................vi
Contents....................................................................................................................................vii
List of Tables..............................................................................................................................xi
List of Figures......................................................................................................................... xiii

1 Introduction............................................................................................................................. 1
1.1 Overview of Interactions of Therapeutic Particles..............................................................1
1.1.1 Indirectly Ionizing Radiation....................................................................................1
1.1.1.1 Neutron Interactions....................................................................................1
1.1.1.2 Neutron Cross Section................................................................................ 2
1.1.1.3 Neutron Reaction Rate.................................................................................3
1.1.1.4 Kerma..........................................................................................................4
1.1.2 Directly Ionizing Radiation......................................................................................5
1.1.2.1 Heavy Charged Particle Interactions............................................................5
1.1.2.2 Stopping Power............................................................................................7
1.1.2.3 Range...........................................................................................................8
1.1.2.4 Absorbed Dose............................................................................................9
1.2 General Advantages of Hadron Therapy...........................................................................10
1.3 Treatment Modalities of Hadron Therapy..........................................................................11
1.3.1 Neutron Capture Therapy........................................................................................11
1.3.2 External Ion Beam Therapy.....................................................................................13
1.4 Motivations and Scopes.....................................................................................................14
2 Methodologies for Hadron Therapy Dosimetry......................................................................16
2.1 Dosimetry Protocols................................................................................................16
2.1.1 Reference Dosimetry of BNCT...............................................................................16
2.1.2 Reference Dosimetry ofEexternal Ion Beam Therapy ............................................17
2.2 Common Detectors for Physical Quantities......................................................................18
2.2.1 Detectors used for the BNCT Dosimetry................................................................18
2.2.1.1 Activation Detectors...........................................................................18
2.2.1.2 Gas-filled Detectors............................................................................19
2.2.1.3 Complementary Techniques......................................................................22
2.2.2 Detectors used for External Ion Beam Therapy.......................................................23
2.2.2.1 Ionization Chambers...........................................................................23
2.2.2.2 Additional Detectors...........................................................................24
2.3 Particle Transport Simulation................................................................................24
2.4 Critical Issues of Dosimeters Applied to Hadron Therapy................................................26

3 Applied Research Materials....................................................................................................28
3.1 Facilities...........................................................................................................................28
3.1.1 The THOR-BNCT Center.......................................................................................28
3.1.1.1 The Tsing Hua Open-pool Research Reactor............................................28
3.1.1.2 The BNCT Treatment Facility........................................................30
3.1.2 The Heidelberg Ion Beam Therapy Center..............................................................32
3.2 Passive Radiation Dosimeters............................................................................................35
3.2.1 The Radiochromic Film Dosimeter..........................................................................35
3.2.2 The Alanine Dosimeter............................................................................................37
3.3 Neutron Detection Techniques..........................................................................................40
3.3.1 Instrumental Neutron Activation Analysis..............................................................40
3.3.2 Indirect Neutron Radiography.................................................................................44
3.4 Monte Carlo Computation: MCNP/MCNPX....................................................................48

4 Radiation Sensitivity Studies of Passive Dosimeters.............................................................53
4.1 The Gafchromic Film Dosimeter......................................................................................53
4.1.1 Neutron Response...................................................................................................53
4.1.1.1 The Calibration and Readout Process.........................................................54
4.1.1.2 Response Properties....................................................................................57
4.1.1.3 The RE Determination................................................................................62
4.1.2 Proton and Carbon Ion Response.............................................................................75
4.1.2.1 The RE Determination in Proton Beams.....................................................75
4.1.2.2 The RE Determination in Carbon Ion Beams..............................................92
4.1.3 Discussion...............................................................................................................99
4.2 The Alanine Dosimeter...................................................................................................102
4.2.1 Neutron Response...................................................................................................102
4.2.1.1 The Calibration and Readout Process.........................................................104
4.2.1.2 The RE Determination................................................................................105
4.2.2. Proton and Carbon Ion Response...........................................................................111
4.2.2.1 The RE Determination in Proton Beams.....................................................112
4.2.2.2 The RE Determination in Carbon Ion Beams..............................................121
4.2.3 Discussion..............................................................................................................126
4.3 Conclusion......................................................................................................................128


5 2D Dose Mapping of the BNCT Beam Using the Radiochromic Film Dosimeter.................130
5.1 In-Phantom Gamma-Ray Dose Mapping in the BNCT Field..........................................130
5.1.1 Measurement on the Photon Equivalent Dose.......................................................132
5.1.2 Determination and Mapping of the Neutron Dose.................................................135
5.1.3 Mapping of the In-Phantom Gamma-Ray Dose....................................................143
5.2 Quality Assurance to the Beam Uniformity of the BNCT Beam.....................................149
5.2.1 Criterion................................................................................................................150
5.2.2 The QA Procedure for the Beam Uniformity........................................................151
5.3 Discussion......................................................................................................................153
5.4 Conclusion......................................................................................................................155

6 Summary and Suggestions....................................................................................................156

References...............................................................................................................................160
[1] J. L. Larmarsh and A. J. Baratta, Introduction to Nuclear Engineeinrg, 3rd edition (Prentice Hall, 2001).

[2] G. F. Knoll, Radiation detection and measurement, 3rd edition (John Wiley & Sons, Inc., New York, 2000).

[3] Neutron Capture Therapy: Principle and Applications, edited by W.A.G. Sauerwein , A. Wittig , R. Moss, Y. Nakagawa, (Springer, Heidelberg, 2012).

[4] F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, (John Wiley & Sons, Inc., New York, 1986).

[5] R. Serber, “Nuclear Reactions at High Energies,” Physical Review, 72:1114–1115, (1947).

[6] K. C. Gwosch, Non-Invasive Monitoring of Carbon Ion Beam Therapy by Tracking of Secondary Ions – An Initial Study. Diploma thesis, University of Heidelberg, (2012).

[7] E. Pedroni et al., “Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys. in Med. Biol., 50:541–561, (2005).

[8] “Stopping powers and ranges for electrons and positrons” Technical Report 37, (International Commission on Radiation Units and Measurements, 1984).

[9] “Stopping powers and ranges for protons and alpha particles” Technical Report 49, (International Commission on Radiation Units and Measurements, 1993).

[10] “Stopping of ions than helium” Technical Report 73, (International Commission on Radiation Units and Measurements, 2005).

[11] P. V. Valivov, “Ionization losses of high-energy heavy particles,” Soviet Physics Jetp User, 5(4), 749-751, (1957).

[12] H. A. Bethe, “Molière’s theory of multiple scattering,” Phys. Rev., 89(6), 1256-1266, (1953).

[13] H. Paganetti et al., “Relative biological effectiveness (RBE) values for proton beam
therapy,” Int. J. Radiat. Oncol. Biol. Phys., 53(2) 407-421, (2002).

[14] E. Fokas et al., “Ion beam radiobilogy and cancer: time to update ourselves,” Biochimita
et Biophysica Acta, 1796(2), 216-229, (2009).

[15] J. Chadwick, “the existence of a neutron,” Proc. R. Soc. London A 136, 692-708, (1932).

[16] H. J. Taylor and M. Goldhaber, “Detection of nuclear disintegration in a photographic
emulsion,” Nature, 135, 341-348, (1935).


[17] G. L. Locher, “Biological effects and therapeutic possibilities of neutrons,” Am J
Roentgenol Radium Ther, 36(1), 1-13, (1936).

[18] L. E. Farr et al., “Neutron capture therapy of gliomas using boron-10,” Trans. Am.
Neurol. Assoc., 79, 110-113, (1954).

[19] J. O. Archambeau, “The effect of increasing exposures of the 10B(n,α)7Li reaction on
the skin of man. Radiology, 94, 178-187, (1970).

[20] D. N. Slatkin, “A history of boron neutron capture therapy of brain tumors,” Brain, 114,
1609-1629, (1991).

[21] W. H. Sweet, A. H. Soloway, G. L. Brownell, “Boron-slow neutron capture therapy of
gliomas,” Acta Radiol. Stockholm, 1, 114-121, (1963).

[22] A. K. Asbury, R. G. Ojeman, S. L. Nielsen, W. H. Sweet, “Neuropathological study of
gourteen xases of malignant brain tumor treated by boron-10 slow neutron capture
radiation,” J. Neuropathol. Exp. Neurol., 31(2), 278-303, (1972).

[23] R. Moss, “Critical review, with an optimistic outlook, on boron neutron capture therapy,”
App. Radiat. Isot., (available URL: http://dx.doi.org/10.1016/j.apradiso.2013.11.109)
(2013).

[24] A. H. Sloway, H. Hatanaka, M. A. Davis, “Penetration of brain and brain tumor VII
tumor binding sulfhydryl boron compounds. J. Med. Chem., 10, 714-717, (1697).

[25] H. Hanataka, Boron-neutron capture therapy for tumors (Nishimura Co., Niigata, 1986).

[26] H. Hanataka, “Clinical results of boron neutron capture therapy,” Basic Life Sci., 54, 15-
21, (1990).

[27] H. Hanataka, W. H. Sweet, K. Sano, F. Ellis, “The present status of boron neutron
capture therapy for tumors,” Pure Appl. Chem., 63(3), 373-374, (1991).

[28] Y. Mishima et al., “First human clinical trial of melanoma neutron capture diagnosis and
therapy,” Strahlenther Onkol., 165(2-3), 251-254, (1989).

[29] R. Wilson, “Radiological use of fast protons,” Radiology, 47, 487-491, (1946).

[30] O. Jäkel, Personal communication, (2014).

[31] J. R. Castro, “Clinical Programs: a review of past and existing hadron protocols,” in
Amaldi. U, Larrson B, Lemoigne Advances in Hadrontherapy, (Elsevier Science,
Amsterdam, 1997).

[32] J. R. Castro et al., “Experience in charged particle irradiation of tumors of the skull base
1977-1992,” Int. J. Radiat. Oncol. Biol. Phys., 29, 647-655, (1994).

[33] Particle Therapy Co-Operative Group (available URL: http://www.ptcog.ch/) accessed
in March 2014.

[34] W. P. Voorbraak et al., Recommendation for the dosimetry of boron neutron capture
therapy (BNCT), (The JRC, Petten, the Netherlands, 2003).

[35] “Neutron dosimetry for medicine and biology,” Technical Report 26, (International
Commission on Radiation Units and Measurements, 1977).

[36] “Clinical neutron dosimetry part I: determination of absorbed dose in a patient treated by
external beams of fast neutrons,” Technical Report 45, (International Commission on
Radiation Units and Measurements, 1989).

[37] P. Andreo et al., “Absorbed dose determination in external beam radiotherapy: an
international code of practice for dosimetry based on standards of absorbed dose to
water,” Technical Report Series No. 398, (International Atomic Energy Agency, 2000).

[38] “Recording, and reporting proton-beam therapy” Technical Report 78, (International
Commission on Radiation Units and Measurements, 2008).

[39] C. P. Karger, O. Jäkel, H. Palmons, T. Kanai, “Dosimetry for ion beam radiotherapy,”
Phys. Med. Biol., 55, 193-234, (2010).

[40] D. E. Alburger, D. Raparia, M. S. Zucher, “Phantoms with BF-3 detectors for boron
neutron capture therapy applications,” Med. Phys., 25, 1735–1738, (1999).

[41] D. A. Tattam, D. A. Allen, T. D. Beynon, G. Constantine, S. Green, M. C. Scott, D. R.
Weave, “In-phantom neutron fluence measurements in the orthogonal Birmingham
boron neutron capture therapy beam,” Med. Phys., 25, 1964–1966, (1998).

[42] Y. D. Harker, R. A. Anderl, G. K. Becker, L. G. Miller, “Spectral characterization of the
epithermal neutron beam at the Brookhaven medical research reactor,” Nucl. Sci. Eng.,
110, 355–368, (1992).

[43] C. A. Perks, A. B. Gibson, “Neutron spectrometry and dosimetry for boron neutron
capture therapy,” Radiat. Prot. Dosimetry 44, 425–428, (1992).

[44] A. F. Bielajew, Fundamentals of the Monte Carlo method for neutral and charged
particle transport, (The University of Michigan, U.S.A., 2001).

[45] M. J. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged
particles, volume 1 of Methods in Computational Physics, (Academic Press, New York
and London, 1963).

[46] P. Andreo, “Monte Carlo techniques in medical radiation physics,” Phys. Med. Biol.,
36(7), 861, (1991).



[47] X-5 Monte Carlo Team, “MCNP- A General Monte Carlo N-Particle Transport Code,
Version 5, Volume I: Overview and Theory,” Report LA-UR-03-1987 (Los Alamos
National Laboratory, 2003).

[48] “Current status of neutron capture therapy,” IAEA-TECDOC-1223 Technical reports series, (International Atomic Energy Agency, 2001).

[49] THOR BNCT brochure, (available URL: http://bnct.web.nthu.edu.tw/files/14-1155-12744,r11-1.php, accessed in April, 2014).

[50] Y.-H. Liu, “Neutronic Characterization of an Epithermal Neutron Beam in Boron Neutron Capture Therapy,” Doctoral dissertation, (National Tsing Hua University, 2009).

[51] Y.-C. Lin, “Radiation Dose Rate Measurement in a Mixed Radiation Field Using Paired Ionization Chambers,” Doctoral dissertation (National Tsing Hua University, Taiwan, 2013).

[52] HIT brochure,
(available URL: http://www.klinikum.uni heidelberg.de/Brochures.118199.0.html?&L=1, accessed in April 2014).

[53] M. Krämer et al., “Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization,” Phys. Med. Biol., 45, 3299–3317, (2000).

[54] J. Telsemeyer, “ Investigation of an Amorphous Silicon Flat-Panel Detector for Ion Radiography,” Doctoral disertation, (University of Heidelberg, 2012).

[55] K. Parodi et al., “Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility,”Phys. Med. Biol., 57:3759–3784, (2012).

[56] U. Weber and G. Kraft, “Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy,” Phys. Med. Biol., 44, 2765–2775, (1999).

[57] W. L. McLaughlin, J. C. Humphreys, D. Hocken, and W. J. Chappas, “Radiochromic dosimetry for validation and commissioning of industrial radiation processes,” in Progress in Radiation Processing , Proceedings of the Sixth International Meeting, Ottawa, 1987, edited by F. M. Fraser, Radiat. Phys. Chem. 31, 505-514 (1988).

[58] W. L. McLaighlin, “Novel radiation dosimetry systems,” invited paper in High Dose Dosimetry for Radiation Processing, Proceedings of International Symposium, Vienna, 1990, STI/PUB/846 (International Atomic Energy Agency, Vienna, 1991), pp. 3-27.

[59] “Radiochromic Film Dosimetry”, Report No. 63, (American Association of Physicists in Medicine, 1998).

[60] M.-C. Hsiao and S.-H. Jiang, “A characterization study of Gafchromic EBT film as a two dimensional dosimeter,” Nucl. Tech., 168, 191-195, (2009).

[61] M.-C. Hsiao, “Measurements on The Penumbral Region of Multi-leaf Collimator in a Medical Linear Accelerator,” Diploma thesis, (National Tsing Hua University, 2007)

[62] S. Reinhardt, M. Hillbrand, J. J. Wilkens, W. Assmann, “Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams,” Med. Phys., 39(8) 5257-5262, (2012).

[63] “GAFCHROMIC® EBT2: self-developing film for radiotherapy dosimetry,” (International Specialty Products, 2009).

[64] D. F. Lewis, Gafchromic Film, 2010 (available URL:
http://online1.ispcorp.com/en-US/gafchromic/Pages/ProductDetail .aspx?BU=GafChromi&prdId=41046).

[65] P. Lindsay et al., “Investigation of energy dependence of EBT and EBT-2 Gafchromic film,” Med. Phys. 37(2), 571–576 (2010).

[66] J. G. H. Sutherland and D. W. O. Rogers, “Monte Carlo calculated absorbed-dose energy dependence of EBT and EBT2 film,” Med. Phys. 37(3), 1110–1116 (2010).

[67] B. Hartmann, “Quality Assurance in Ion Beam Therapy: Investigations towards New Detectors,” Diploma thesis, (Martin-Luther University Halle-Wittenberg, 2010).

[68] W.W. Bradshaw, D.G. Cadena, G.W. Crawford and H.A.W. Spetzler, “The use of alanine as a solid dosimeter,” Rad. Res., 17, 11–21 (1962).

[69] International Commission on Radiation Units and Measurements (ICRU), “Dosimetry systems for use in radiation processing” (ICRU Report 80), Journal of the ICRU 80 (2008).

[70] S. Onori, F. d’Errico, C. De Angelis, E. Egger, P. Fattibene, and I. Janovsky, “Alanine dosimetry of proton therapy beams,” Med. Phys., 24, 447 (1997).

[71] R. Herrmann, Jäkel O., H. Palmans, P. Sharpe, and N. Bassler, “Dose response of alanine detectors irradiated with carbon ion beams,” Med. Phys., 38, 1859–1866 (2011).

[72] A. Ableitinger, S. Vatnitsky, R. Herrmann, N. Bassler, H. Palmans, P. Sharpe, S. Ecker, N. Chaudhri, O. Jäkel, D. Georg, “Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy: results of a pilot study,” Radiother. Oncol., 108, 99-106 (2013).

[73] H.M. Gerstenberb, J.W. Hansen, J.J. Coyne, and J. Zoetelief, „Calculation of the relative effectiveness of alanine for neutrons up to 17.1 MeV,” Rad. Prot. Dos., 31, 85–89 (1990).

[74] B. Ciesielski and L. Wielopolski, “The effects of boron on the electron paramagnetic resonance spectra of alanine irradiated with thermal neutrons,” Rad. Res., 144, 59–63 (1995).

[75] F. Trompier, P. Fattibene, D. Tikunov, A. Bartolotta, A. Carosi, and M.C. Doca, “EPR dosimetry in a mixed neutron and gamma radiation field,” Rad. Prot. Dos., 110, 437–442 (2004).

[76] “Photon, electron, proton, and neutron interaction data for body tissues” Technical Report 46, (International Commission on Radiation Units and Measurements, 1992).

[77] J.W. Hansen, and K.J. Olsen, “Theoretical and experimental radiation effectiveness of the free radical dosimeter alanine to irradiation with heavy charged particles,” Rad. Res. 104, 15–27 (1985).

[78] Y.-H. Liu, “清華水池式反應器硼中子捕獲治療設施之標準操作程序書: 超熱中子射束驗證與測量,” 2009.

[79] Los Alamos National Laboratory website (available URL: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/index.shtml, accessed in March 2014).

[80] D. Pelowitz, “MCNPX User’s Manual,” Report LA-CP-11-00438 (Los Alamos National Laboratory, 2005).

[81] The NIST website (available URL: http://www.nist.gov/pml/data/, accessed in April 2014).

[82] L. Zhao and I. J. Das, “Gafchromic EBT film dosimetry in proton beams,” Phys. Med. Biol., 55, 291–301, (2010).

[83] B. Arjomandy, R. Tailor, L. Zhao and S. Devic, “EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities,” Med. Phys., 39, 912–21, (2012).

[84] B. Arjomandy et al., “Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon electron and proton beam energies,” Med. Phys., 37 1942–7 (2010).

[85] M. Martišíková and O. Jäkel, “Gafchromic EBT films for ion dosimetry,” Radiat. Meas., 45, 1268–1270, (2010a).

[86] M. Martišíková and O. Jäkel, “Dosimetric properties of Gafchromic EBT films in monoenergetic medical ion beams,” Phys. Med. Biol., 55 3741–3751, (2010b).

[87] M. Martišíková and O. Jäkel, “Dosimetric properties of Gafchromic EBT films in medical ion beams,” Phys. Med. Biol., 55 5557–5567, (2010c).

[88] J. J. Butts and R. Katz R, “Theory of RBE for heavy ion bombardment of dry enzymes and viruses,” Radiat. Res., 30, 855–871, (1967).

[89] J. W. Hanson and K. J. Olsen, “Experimental and calculated response of a radiochromic dye film dosimeter to high LET radiations,” Radiat. Res., 97, 1–15, (1984).

[90] AAPM, “Protocol for clinical reference dosimetry of high-energy photon and electron beams”, Task Group Report No. 51 (AAPM, 1999).

[91] M. J. Berger, J. S. Coursey, M. A. Zucker and J. Chang, “ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3),” (Gaithersburg, MD: National Institute of Standards and Technology) http://physics.nist.gov/Star, (2005).

[92] D. Kirby et al., “LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry Phys. Med. Biol., 55, 417–433, (2010).

[93] B. Hartmann, “Quality Assurance in Ion Beam Therapy: Investigations towards New Detectors,” Diploma thesis, (Martin-Luther University Halle-Wittenberg, 2010).

[94] G. Angellier, M. Gautier and J. Hérault, “Radichromic EBT2 dosimetry for low-energy proton therapy,” Med. Phys., 38, 6171–6177 (2011).

[95] D. Jette and W. Chen, “Creating a spread-out Bragg peak in proton beams,” Phys. Med. Biol., 56, 131-138 (2011).

[96] J.W. Hansen, K.J. Olsen, and M. Wille, “The alanine radiation detector for high and low LET dosimetry,” Rad. Prot. Dos. 19, 43-47 (1987).

[97] J.W. Hansen, and K.J. Olsen, “Predicting decay in free-radical concentration in L-α-alanine following high-LET radiation exposures”, Appl. Radiat. Isot. 40, 935–939 (1989).

[98] J.W. Hansen, and K.J. Olsen, “Theoretical and experimental radiation effectiveness of the free radical dosimeter alanine to irradiation with heavy charged particles,” Rad. Res. 104, 15–27 (1985).

[99] N. Bassler et al. “The antiproton depth-dose curve measured with alanine detectors,” Nucl. Instr. and Meth., B 266, 929-936 (2008).

[100] P.H.G. Sharpe, and J.P. Septhon, “Alanine dosimetry at NPL - the development of a mailed reference dosimetry service at radiotherapy dose levels,” Technical Report, IAEA-SM-356/65 (1999).

[101] Y.-H. Liu et al., “Performance evaluation of the source description of the THOR BNCT epithermal neutron beam,” Appl. Radiat. Isot., 69, 1892-1896, (2011).

[102] S. Onori, F. d’Errico, C. De Angelis, E. Egger, P. Fattibene, and I. Janovsky, “Alanine dosimetry of proton therapy beams,” Med. Phys., 24, 447 (1997).
[103] R. Herrmann, Jäkel O., H. Palmans, P. Sharpe, and N. Bassler, “Dose response of alanine detectors irradiated with carbon ion beams,” Med. Phys., 38, 1859–1866 (2011).

[104] A. Ableitinger, S. Vatnitsky, R. Herrmann, N. Bassler, H. Palmans, P. Sharpe, S. Ecker, N. Chaudhri, O. Jäkel, D. Georg, “Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy: results of a pilot study,” Radiother. Oncol., 108, 99-106 (2013).

[105] G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Leibel, R. J. Morton, J. R. Palta, J. A. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller, L. Wingfield, “Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40,” Med Phys 21(4): 581–618, (1994).

[106] E. E., Klein, J. Hanley, J. Bayouth, F.F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, T. Holmes, “Task Group 142 report: quality assurance of medical accelerators,” American Association of Physicists in Medicine. Med Phys 36(9): 4197–4212, (2009).

[107] I. Auterinen, T, Serén, P. Kotiluoto, J. Uusi-Simola, S. Savolainen, “Quality assurance procedures for the neutron beam monitors at the FiR 1 BNCT facility,” Appl Radiat Isot 61(5): 1015–1019, (2004).

[108] J. Rassow, F. Stecher-Rasmussen, W. Voorbraak, R. Moss, C. Vroegindeweij, K. Hideghéty, W. Sauerwien, “Comparison of quality assurance for performance and safety characteristics for boron neutron capture therapy in Petten/NL with medical electron accelerators,” Radiat Oncol 59:99–108, (2001).

[109] C. P. Raaijmakers, E. L. Nottelman, M. W. Konijnenberg, B. J. Mijnheer, “Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam,” Phys Med Biol 41(12):2789–2797, (1996).

[110] Y.-H. Liu et al., “Quality control and quality assurance procedures at the THOR BNCT facility,” Appl. Radiat. Isotop., 69, 1897-1900, (2011).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *