帳號:guest(18.219.236.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳義洋
作者(外文):Chen, Yi-Yang
論文名稱(中文):少數載子生命週期量測在高效率矽晶太陽能電池的開發與應用
論文名稱(外文):Applications of Lifetime Spectroscopy and Their Implications in High Efficiency Silicon Solar Cell Design
指導教授(中文):甘炯耀
口試委員(中文):黃振昌
李紫原
陳頤承
熊昌鉑
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731809
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:118
中文關鍵詞:少數載子生命週期量測太陽能電池矽晶
相關次數:
  • 推薦推薦:0
  • 點閱點閱:513
  • 評分評分:*****
  • 下載下載:68
  • 收藏收藏:0
少數載子生命週期量測一直是高效率矽晶太陽能電池研發過程中所不可獲缺的技術.本論文將針對其理論以及量測技術進行探討.首先我們對兩種表面鈍化機制(場效應、界面化學效應)和整體覆合的關係進行探討.從其解析方程式中我們可以發現,在某些情況下,只需要一條載子生命週期對多餘載子的量測區線即可將兩者效應分開.此項技術能有效的決定表面鈍化的失效的真實原因.除此之外,我們也將其應用於探討化學溶液表面鈍化,利用少數載子生命週期量測我們可以觀測到溶液和矽晶圓表面的交互作用進而推測其表面鈍化原理.

最後,由於目前網印太陽能電池的發展達到瓶頸,許多高效率的結構例如背接式太陽能電池的開發漸漸的為人們所注意.然而它的致命傷在於複雜的結構以及許多高溫的製程.因此本論文特別針對低溫(650 C)的擴散特性進行探討,我們發現在低溫的擴散環境下,磷玻璃提供了非常良好的表面鈍化效果,使得開路電壓有機會能達到750 mV以上.此一結果和目前高效率的太陽能電池相仿然而卻能在較低的溫度達成,故能有效的降低製程所需要的能量以及複雜性.
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Chinese abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
List of fgures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .X. .VIII
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIX
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Chapter guilds . . . . . . . . . . . . . . . . . . 4
2 Literature Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Carrier generation and recombination [11, 12, 6] . . . . 6
2.1.1 Generation, recombination, and recombination
lifetime . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Recombination mechanisms . . . . . . . . . . . 8
2.1.3 Intrinsic recombination . . . . . . . . . . . . . . 9
2.1.4 Extrinsic recombination . . . . . . . . . . . . . 13
2.1.5 Surface recombination . . . . . . . . . . . . . . 14
2.1.6 Effective lifetime . . . . . . . . . . . . . . . . . 17
2.2 Silicon solar cells [27, 28] . . . . . . . . . . . . . . . . . 18
2.2.1 Working principle . . . . . . . . . . . . . . . . . 18
2.2.2 I-V characteristic and the equivalent circuit . . 19
2.2.3 Short-circuit current . . . . . . . . . . . . . . . 21
2.2.4 Open-circuit voltage . . . . . . . . . . . . . . . 22
2.2.5 Fill factor . . . . . . . . . . . . . . . . . . . . . 23
2.3 Surface passivation . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Effective surface recombination velocity and saturation
current density . . . . . . . . . . . . . . 25
2.3.2 Surface passivation techniques . . . . . . . . . . 30
3 Photoconductance Decay Measurements and Data Anal-
ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Photoconductance decay theory . . . . . . . . . . . . . 33
3.2 Microwave-detected photoconductance decay . . . . . . 34
3.3 Quasi-steady-state photoconductance decay . . . . . . 35
3.3.1 Data interpretation and analysis . . . . . . . . . 36
3.4 Trapping and depletion region modulation . . . . . . . 38
3.5 Extracting effective surface recombination velocity and
saturation current . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Effective surface recombination velocity and saturation
current . . . . . . . . . . . . . . . . . . 41
3.5.2 Implied open-circuit voltage and implied I-V . 43
3.6 SunsVOC . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Field-effect Passivation and Degradation . . . . . . . . . . . 48
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Injection dependent surface potential . . . . . . . . . . 50
4.3 Surface recombination under strong field-effect . . . . . 53
4.4 Separation of the chemical and field-effect passivation . 56
4.5 Inaccuracy due to PCD measurement error . . . . . . . 59
4.6 Limitations and restrictions . . . . . . . . . . . . . . . 60
4.7 Passivation degradation . . . . . . . . . . . . . . . . . 61
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Surface Passivation by Wet Chemical Solutions . . . . . 64
5.1 Wet chemical solutions surface passivation . . . . . . . 64
5.2 Prior arts . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Passivation mechanisms . . . . . . . . . . . . . 66
5.3 Wafer preparation, chemical solutions, and PCD measurements
. . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Discerning passivation mechanisms of the silicon/liquid
junction . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Non-ideal injection dependent lifetime . . . . . . . . . . . . . . . . . 71
5.4.2 Disassociating the injection dependent lifetime passivated by wet chemicals
. . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Iodine surface passivation . . . . . . . . . . . . . . . . 75
5.5.1 Solvent effects . . . . . . . . . . . . . . . . . . . 79
5.5.2 Comparison passivation effect between iodine and
quinhydrone . . . . . . . . . . . . . . . . . . . . 81
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 82
6 Low Temperature (650 C) POCl3 Diffusion and Their
Applications in High Effciency Silicon Solar Cells . . 84
6.1 POCl3 di usion in conventional screen-printed silicon
solar cells . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Back contact solar cells . . . . . . . . . . . . . . . . . . 86
6.3 Front surface field design . . . . . . . . . . . . . . . . . 87
6.3.1 The optimal diffusion profile . . . . . . . . . . . 89
6.4 Temperature dependent diffusion behaviors . . . . . . . 91
6.5 Passivation effect of low temperature POCl3 diffused
surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Passivation of SiNx/PSG stack layers . . . . . . . . . . 97
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 100
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
[1] G. Carr. Sunny uplands: Alternative energy will no longer be alternative. The economist, 2012.
[2] M. A. Green. The path to 25 % silicon solar cell effciency: History of silicon cell evolution. Progress in Photovoltaics, 17(3):183-189, 2009.
[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop. Solar cell effciency tables (version 42). Progress in Photovoltaics, 21(5):827-837, 2013.
[4] http://panasonic.co.jp/corp/news/ocial.data/data.dir/2014/04/en140410-4/en140410-4.html.
[5] M. A. Green. Limits on the open-circuit voltage and effciency of silicon solar cells imposed by intrinsic auger processes. IEEE Transactions on Electron Devices, 31(5):671-678, 1984.
[6] S. Rein. Lifetime spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications. Springer, 2005.
[7] A. Cuevas, R. A. Sinton, and M. Stuckings. Determination of recombination parameters in semiconductors from photoconductance measurements. 1996 Conference on Optoelectronic and Mi-
croelectronic Materials and Devices, Proceedings, pages 16-19,1996.
[8] A. Cuevas and R. A. Sinton. Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance. Progress in Photovoltaics, 5(2):79-90, 1997.
[9] A. Cuevas, M. Kerr, D. Macdonald, and R. A. Sinton. Emitter quantum effciency from contactless photoconductance measurements. Conference Record of the Twenty-Eighth Ieee Photovoltaic Specialists Conference - 2000, pages 108-111, 2000.
[10] A. Cuevas, R. A. Sinton, M. Kerr, D. Macdonald, and H. Mackel. A contactless photoconductance technique to evaluate the quantum effciency of solar cell emitters. Solar Energy Materials and Solar Cells, 71(3):295-312, 2002.
[11] S. M. Sze. Semiconductor devices: physics and technology 2nd edition. Wiley & Sons, 2002.
[12] Y. Taur and T. H. Ning. Fundamentals of modern VLSI devices. Cambridge, 1998.
[13] T. Trupke, M. A. Green, P. Wurfel, P. P. Altermatt, A. Wang, J. Zhao, and R. Corkish. Temperature dependence of the radiative recombination coeffcient of intrinsic crystalline silicon. Journal
of Applied Physics, 94(8):4930-4937, 2003.
[14] U. Strauss, W. W. Ruhle, and K. Kohler. Auger recombination in intrinsic gaas. Applied Physics Letters, 62(1):55-57, 1993.
[15] Ronald A.; Sinton and R. M. Swanson. Recombination in highly injected silicon. IEEE Transactions on Electron Devices, 34(6):1380-1389, 1987.
[16] P. P. Altermatt, J. Schmidt, G. Heiser, and A. G. Aberle. Assessment and parameterisation of coulomb-enhanced auger recombination coeffcients in lowly injected crystalline silicon. Journal of Applied Physics, 10):4938-4944, 1997.
[17] J. Schmidt, M. Kerr, and P. P. Altermatt. Coulomb-enhanced auger recombination in crystalline silicon at and high injection densities. Journal of Applied Physics, 88(3):1494-1497, 2000.
[18] M. J. Kerr and A. Cuevas. General parameterization of auger recombination in crystalline silicon. Journal of Applied Physics, 91(4):2473-2480, 2002.
[19] A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas. Improved quantitative description of auger recombination in crystalline silicon. Phys. Rev. B, 86:165202, Oct 2012.
[20] W. Shockley and W. T. Read. Statistics of the recombinations of holes and electrons. Physical Review, 87(5):835-842, 1952.
[21] R. N. Hall. Electron-hole recombination in germanium. Phys. Rev., 87:387-387, Jul 1952.
[22] S. Rein, T. Rehrl, W. Warta, and S. W. Glunz. Lifetime spectroscopy for defect characterization: Systematic analysis of the possibilities and restrictions. Journal of Applied Physics, 91(4):2059-2070, 2002.
[23] D. Macdonald, A. Cuevas, and J. Wong-Leung. Capture cross sections of the acceptor level of iron{boron pairs in p-type silicon by injection-level dependent lifetime measurements. Journal of Applied Physics, 89(12):7932-7939, 2001.
[24] A. G. Aberle. Surface passivation of crystalline silicon solar cells: a review. Progress in Photovoltaics: Research and Applications, 8(5):473-487, 2000.
[25] D. K. Schroder. Semiconductor material and device characterization 3rd edition. Wiley & Sons, 2006.
[26] A. B. Sproul. Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors. Journal of Applied Physics, 76(5):2851-2854, 1994.
[27] F. Tao and S. Bernasek. Functionalization of semiconductor surfaces. Wiley, 1982.
[28] A. L. Fahrenbruch and R. H. Bube. Fundamentals of solar cells: photovoltaic solar energy conversion. Academic press, 1983.
[29] P.J. Cousins, D. D. Smith, Hsin-Chiao Luan, J. Manning, T.D. Dennis, A. Waldhauer, K.E. Wilson, G. Harley, and W.P. Mulligan. Generation 3: Improved performance at lower cost. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, pages 000275-000278, June 2010.
[30] R. R. King, R. A. Sinton, and R. M. Swanson. Front and back surface fields for point-contact solar cells. In Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE, pages 538-544 vol.1, 1988.
[31] R. R. King, R. A. Sinton, and R. M. Swanson. Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum effciency. Electron Devices, IEEE Transactions on, 37(2):365{371, 1990.
[32] R. R. King and R. M. Swanson. Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. Electron Devices, IEEE Transactions on,38(6):1399-1409, 1991.
[33] M. A. Green. Solar-cell fill factors - general graph and empirical expressions. Solid-State Electronics, 24(8):788-789, 1981.
[34] M. A. Green. Accuracy of analytical expressions for solar-cell fill factors. Solar Cells, 7(3):337-340, 1982.
[35] M. A. Green. Limiting effciency of bulk and thin-film silicon solar cells in the presence of surface recombination. Progress in Photovoltaics: Research and Applications, 7(4):327-330, 1999.
[36] H. Nagel, C. Berge, and A. G. Aberle. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. Journal of Applied Physics, 86(11):6218-6221, 1999.
[37] Helmut Mackel and Kenneth Varner. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Progress in Photovoltaics: Research and Applications, 21(5):850{866, 2013.
[38] D. E.; Kane and R.M.; Swanson. Measurement of the emitter saturation current by a contactless photoconductivity decay method (silicon solar cells). In Proceedings of the 18th IEEE Photovoltaic Specialists Conference, pages 578{583, 1985.
[39] B. Chhabra, S. Bowden, R. L. Opila, and C. B. Honsberg. High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Applied Physics Letters, 96(6):063502, 2010.
[40] B. Chhabra, C. Weiland, R. L. Opila, and C. B. Honsberg. Surface characterization of quinhydrone-methanol and iodinemethanol passivated silicon substrates using x-ray photoelectron spectroscopy. physica status solidi (a), 208(1):86-90, 2011.
[41] B. Hoex, A. J. M. van Erven, R. C. M. Bosch, W. T. M. Stals, M. D. Bijker, P. J. van den Oever, W. M. M. Kessels, and M. C. M. van de Sanden. Industrial high-rate (< 5 nm/s) deposited silicon nitride yielding high-quality bulk and surface passivation under optimum anti-reection coating conditions. Progress in Photovoltaics: Research and Applications, 13(8):705-712, 2005.
[42] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels. Ultralow surface recombination of c-si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Applied Physics Letters, 89(4):35-38, 2006.
[43] M. J. Kerr and A. Cuevas. Very low bulk and surface recombination in oxidized silicon wafers. Semiconductor Science and Technology, 17(1):35, 2002.
[44] A. W. Stephens and M. A. Green. Effctiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photoconductance decay measurements. Solar Energy Materials and Solar Cells, 45(3):255-265, 1997.
[45] H. Takato, I. Sakata, and R. Shimokawa. Quinhydrone/methanol treatment for the measurement of carrier lifetime in silicon substrates. Japanese Journal of Applied Physics, 41(Part 2, No. 8A):L870, 2002.
[46] H. Takato, I. Sakata, and R. Shimokawa. Surface passivation of silicon substrates using quinhydrone/methanol treatment. In Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, volume 2, pages 1108-1111, 2003.
[47] W. J. Royea, D. J. Michalak, and N. S. Lewis. Role of inversion layer formation in producing low effective surface recombination velocities at si/liquid contacts. Applied Physics Letters, 77(16):2566-2568, 2000.
[48] A. G. Aberle and R. Hezel. Progress in low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Progress in Photovoltaics: Research and Applications, 5(1):29{50, 1997.
[49] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels. Surface passivation of high-effciency silicon solar cells by atomic-layer-deposited al2o3. Progress in Photovoltaics: Research and Applications, 16(6):461-466, 2008.
[50] T. T. A. Li and A. Cuevas. Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide. Progress in Photovoltaics: Research and Applications, 19(3):320-325, 2011.
[51] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama. 24.7 %; record effciency hit solar cell on thin silicon wafer. Photovoltaics, IEEE Journal of, 4(1):96{99, Jan 2014.
[52] A. Cuevas. A good recipe to make silicon solar cells. In Photovoltaic Specialists Conference, 1991., Record of the Twenty Second IEEE, pages 466-470 vol.1, Oct 1991.
[53] R. A. Sinton, A. Cuevas, and M. Stuckings. Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, pages 457-460, 1996.
[54] M. Kunst and G. Beck. The study of charge carrier kinetics in semiconductors by microwave conductivity measurements. Journal of Applied Physics, 60(10):3558-3566, 1986.
[55] M. Schofthaler and R. Brendel. Sensitivity and transient response of microwave reflection measurements. Journal of Applied Physics, 77(7):3162-3173, 1995.
[56] Sinton Instrument. WCT-120 photoconductance lifetime tester user manual v3.0. Sinton Consulting, 2013.
[57] F. Dannhauser. Die abhangigkeit der tragerbeweglichkeit in silizium von der konzentration der freien ladungstrager|i. Solid-State Electronics, 15(12):1371-1375, 1972.
[58] J. Krausse. Die abhangigkeit der tragerbeweglichkeit in silizium von der konzentration der freien ii. Solid-State Electronics, 15(12):1377-1381, 1972.
[59] P. J. Cousins, D. H. Neuhaus, and J. E. Cotter. Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements. Journal of Applied Physics, 95(4):1854-1858, 2004.
[60] D. Macdonald, R. A. Sinton, and A. Cuevas. On the use of a biaslight correction for trapping effects in photoconductance-based lifetime measurements of silicon. Journal of Applied Physics, 89(5):2772-2778, 2001.
[61] R. A. Sinton and A. Cuevas. A quasi-steady-state open-circuit voltage method for solar cell characterization. In 16th European photovoltaic solar energy conference, 2000.
[62] T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt, and R. Brendel. Towards 20silicon solar cells. Progress in Photovoltaics: Research and Applications, 20(6):630-638, 2012.
[63] E. Lohmuller, B. Thaidigsmann, M. Pospischil, U. Jager, S. Mack, J. Specht, J. Nekarda, M. Retzla, A. Krieg, F. Clement, A. Wolf, D. Biro, and R. Preu. 20 % effcient passivated large-area metal wrap through solar cells on boron-doped cz silicon. Electron Device Letters, IEEE, 32(12):1719{1721, 2011.
[64] R. A. Sinton and A. Cuevas. Contactless determination of currentvoltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Applied hysics Letters, 17):2510-2512, 1996.
[65] C. Leendertz, R. Stangl, T. F. Schulze, M. Schmidt, and L. Korte. A recombination model for a-si:h/c-si heterostructures. physica status solidi (c), 7(3-4):1005-1010, 2010.
[66] C. Leendertz, N. Mingirulli, T. F. Schulze, J. P. Kleider, B. Rech, and L. Korte. Discerning passivation mechanisms at a-si:h/c-si interfaces by means of photoconductance measurements. Applied Physics Letters, 98(20):202108-3, 2011.
[67] F. J. Ma, G. G. Samudra, M. Peters, A. G. Aberle, F. Werner, J. Schmidt, and B. Hoex. Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers. Journal of Applied Physics, 112(5):054508, 2012.
[68] A. G. Aberle, S. Glunz, and W. Warta. Impact of illumination level and oxide parameters on shockley-read-hall recombination at the si-sio2 interface. Journal of Applied Physics, 71(9):4422-4431,1992.
[69] S. Olibet, Evelyne V.-S., and C. Ballif. Model for a-si:hc-si interface recombination based on the amphoteric nature of silicon dangling bonds. Physical Review B, 76(3):035326, 2007.
[70] E. O. Johnson. Large-signal surface photovoltage studies with germanium. Physical Review, 111(1):153{166, 1958.
[71] H. M'Saad, J. Michel, J. J. Lappe, and L. C. Kimerling. Electronic passivation of silicon surfaces by halogens. Journal of Electronic Materials, 23(5):487-491, 1994.
[72] B. Sopori, P. Rupnowski, J. Appel, V. Mehta, C. Li, and S. Johnston. Wafer preparation and iodine-ethanol passivation procedure for reproducible minority-carrier lifetime measurement. In Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, pages 1-4, 2008.
[73] W. J. I. DeBenedetti and Y. J. Chabal. Functionalization of oxide free silicon surfaces. Journal of Vacuum Science & Technology A, 31(5):050826, 2013.
[74] M. A. Green. Solar Cells: Operating Principles, Technology, and System Applications. Wiley & Sons, 2012.
[75] J. A. Haber and N. S. Lewis. Infrared and x-ray photoelectron spectroscopic studies of the reactions of hydrogen-terminated crystalline si(111) and si(100) surfaces with br2, i2, and ferrocenium in alcohol solvents. The Journal of Physical Chemistry B, 106(14):3639-3656, 2002.
[76] R. Hunger, R. Fritsche, B. Jaeckel, W. Jaegermann, L. J. Webb, and N. S. Lewis. Chemical and electronic characterization of methyl-terminated si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Physical Review B, 72(4):045317, 2005.
[77] F. Gstrein, D. J. Michalak, W. J. Royea, and N. S. Lewis. Effects of interfacial energetics on the effective surface recombination velocity of si/liquid contacts. The Journal of Physical Chemistry B, 106(11):2950-2961, 2002.
[78] R. Har-Lavan, R. Schreiber, O. Yae, and D. Cahen. Molecular eld effect passivation: Quinhydrone/methanol treatment of nsi(100). Journal of Applied Physics, 113(8):084909, 2013.
[79] A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling. Defect states at silicon surfaces. Physica B: Condensed Matter, 273-274(0):468-472,1999.
[80] M. D. E. Forbes and N. S. Lewis. Real-time measurements of interfacialcharge transfer rates at silicon/liquid junctions. Journal of the American Chemical Society, 112(9):3682-3683, 1990.
[81] S. Glunz, D. Biro, S. Rein, and W.Warta. Field-effect passivation of the SiO2Si interface. Journal of Applied Physics, 86(1):683-691, 1999.
[82] F. Granek, M. Hermle, C. Reichel, A. Grohe, O. Schultz-Wittmann, and S. Glunz. Positive effects of front surface field in high-effciency back-contact back-junction n-type silicon solar cells. In Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE, pages 1-5, 2008.
[83] M. Lu, U. Das, S. Bowden, S. Hegedus, and R. Birkmire. Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation. In Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, pages 001475-001480, 2009.
[84] M. Hermle, F. Granek, O. Schultz, and S. W. Glunz. Analyzing the effects of front-surface fields on back-junction silicon solar cells using the charge-collection probability and the reciprocity theorem. Journal of Applied Physics, 103(5):054507, 2008.
[85] A. Zouari and B. A. Adel. Effect of the front surface field on crystalline silicon solar cell effciency. Renewable Energy, 36(6):1663-1670, 2011.
[86] Achim Kimmerle, Robert Woehl, Andreas Wolf, and Daniel Biro. Simplified front surface field formation for back contacted silicon solar cells. Energy Procedia, 38(0):278-282, 2013.
[87] F. Granek, C. Reichel, M. Hermle, D. M. Huljic, O. Schultz, and S. W. Glunz. Front surface passivation of n-type high-effciency back-junction silicon solar cells using front surface, 2007.
[88] S. Y. Herasimenka, C. J. Tracy, V. Sharma, N. Vulic, W. J. Dauksher, and S. G. Bowden. Surface passivation of n-type c-si wafers by a-si/sio2/sinx stack with < 1 cm/s effective surface recombination velocity. Applied Physics Letters, 103(18):183903{183903-5,Oct 2013.
[89] P. P. Altermatt, J. O. Schumacher, A. Cuevas, M. J. Kerr, S. W. Glunz, R. R. King, G. Heiser, and A. Schenk. Numerical modeling of highly doped si : P emitters based on fermi-dirac statistics and self-consistent material parameters. Journal of Applied Physics, 92(6):3187-3197, 2002.
[90] R. Manijeh. Fundamentals of solid state engineering 2nd edition. Springer, 2006.
[91] J. Schmidt, F. M. Schuurmans, W. C. Sinke, S. W. Glunz, and A. G. Aberle. Observation of multiple defect states at silicon-silicon nitride interfaces fabricated by low-frequency plasmaenhanced chemical vapor deposition. Applied Physics Letters, 71(2):252-254, 1997.
[92] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs. Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells. Applied Physics Letters, 92(6):063510, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *