帳號:guest(52.54.111.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊宇
論文名稱(中文):新世代核電廠安全分析軟體(TRACE)在長時間電廠全黑與喪失冷卻水複合型事故核一廠分析模式建立與因應對策之研究
論文名稱(外文):TRACE Analysis of the Alternate Mitigation Strategies on Combined Accidents of Extended SBO and LOCA for Chinshan BWR/4
指導教授(中文):施純寬
王仲容
口試委員(中文):白寶實
王琅琛
鄭憶湘
林浩慈
學位類別:博士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:9713801
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:228
中文關鍵詞:電廠全黑及喪失冷卻水事故高壓緊急爐心冷卻系統TRACEBWR4DEG LOCA蒸汽驅動注水系統
外文關鍵詞:extended SBO and LOCAECCSTRACEBWR4DEG LOCA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:431
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
從日本福島核電廠事故後,「複合式天然災害導致多重安全系統喪失」是可能發生的,長時間電廠全黑事故會導致現有的低壓緊急爐心冷卻系統喪失功能,本論文探討在電廠全黑時運用衰變熱所產生之蒸汽推動高壓緊急爐心冷卻系統以確保反應爐水位及完整性。因此需要新一代先進、快速且精準的分析程式,廣泛分析各種複合式災害對於核能安全的影響,並對於長時間設備故障會造成事件嚴重程度做更長時間分析,使事故發生現象更清楚呈現,透過此分析後可以有效提供核能發電廠經營者在發生複合式事故初期做更正確的決策。
TRACE為新世代的最佳估算(Best Estimate)安全分析程式,是美國核管會整合過去發展的分析程式TRAC、RELAP5及RAMONA優點作為未來主要的電廠安全分析程式,具有三維熱水流計算能力、圖形化輸入介面、模組化重要設備及擬態動畫能力,並與大量實驗數據驗證,提供先進、快速且精準的分析工具。
本論文以福島核電廠同型之核一廠BWR/4做為TRACE模式的建立基礎,從電廠設計資料建立,應用TRACE的各樣模組真實地模擬爐心熱-水流狀態,尤其成功模擬汽水分離器與降流區之間的軸向流動,可更瞭解暫態事件該區域的熱-水流狀態。經與試運轉測試資料及終期安全分析報告(FSAR)驗證,可應用於暫態事件及喪失冷卻水事故分析,利用其快速分析優點,本論文從循環管路雙截斷管喪失冷卻水事故(DEG LOCA)分析,並針對日本福島核電廠類型之複合式天然災害核子事故後,在「複合式電廠全黑及喪失冷卻水事故」維持反應爐水位非常重要的「反應爐心隔離及冷卻系統(RCIC)」蒸汽驅動注水系統,包括無破孔、安全釋壓閥故障及1%, 10%, 100%不同尺寸破孔下採用蒸汽驅動高壓注水的可行替代方案的爐心狀態與策略分析。從本論文研究結果發現在「長時間電廠全黑事故」中反應爐心隔離及冷卻系統(RCIC)注水量僅足以應付反應爐無破孔情況,甚至無法滿足一個安全釋壓閥故障全開時的洩漏量;且反應爐洩壓過程中水位會急遽下降,造成後續注水伴隨的反應爐壓力突升,對於替代性外部低壓注水的有效性大打折扣,增加爐心融毀風險。因此「長時間電廠全黑事故」中善用蒸汽推動高壓注水系統是十分重要的反應爐冷卻對策,希望藉由本論文研究做為未來更完整的複合式緊急安全設備故障事故分析開端,找出潛在的嚴重安全因子,提昇核能安全。
After the Japanese Fukushima-Daiichi accident, the extreme event beyond the design basis accident is realized to be possible in the combined disasters. The current mitigation strategy of ECCS could fail because the low pressure injection system with electrical pumps will fail in a station blackout accident. To utilize the best of residual steam by the turbine driven pump is a possible alternate mitigation strategy and is analyzed in the paper. An advanced safety analysis tool with fast, accurate and integrated man-machine interface is necessary to analyze more different cases in the extreme accident and provide more safety precautions and more operation strategies for the plant owners. The TRACE code, the latest and advanced best-estimate simulation code, incorporates the four important codes, TRAC-P、TRAC-B、RELAP5 and RAMONA, and a graphic user interface, Symbolic Nuclear Analysis Package (SNAP), to provide a modern thermal-hydraulic analysis tool with fast and integrated inputs, and will become the NRC’s flagship thermal-hydraulic analysis tool in the near future. The TRACE model of Chinshan nuclear power plant with the same BWR/4 reactor of Fukushima-Daiichi NPP is developed, (1) based on the plant design data; (2) consists of different modules to simulate the reactor systems; and (3) analyzes the 3D thermal-hydraulic phenomena through the 3D VESSEL component and more practical thermal-hydraulic phenomena can be analyzed in the downcomer, fuel-assembly reactor core, core bypass, and upper and lower plenum. The Chinshan TRACE model, which has been benchmarked through several transient cases with the Chinshan FSAR report, the start-up data and the transient results of RETRAN data, can be adopted for analyzing both hypothetical transient scenarios and loss-of-coolant accidents, and further more for the alternate mitigation strategies of the extreme accidents of Fukushima-Daiichi type. In this paper, a double-ended guillotine (DEG) break on the recirculation loop is analysis. The Fukushima-Daiichi type accidents, the extended station blackout (SBO) accidents, are evaluated with several scenarios like no break, one SRV stuck open and the various break areas with the 1%, 10%, 100% cross areas of recirculation loop. The current RCIC injection flow rate is not sufficient in a very small break like 1% break area of a recirculation loop and even in the stuck open of a safety/ relieve valve (SRV). The reactor water level will sharply reduce when the reactor pressure is released and result in a fast increase of the fuel temperature. In this situation, the reactor pressure will increase once the coolant being injected that will reduce the effect of the external low pressure injecting system. Thus, the turbine driven pumps, the RCIC pump and the HPCI pump, are one of the important alternate mitigation strategies in the extended SBO. Through this paper, the more advanced analysis on the combined accidents could be performed for the improvement of nuclear safety.
Chapter 1 Introduction...............................1
1.1 Motivation of the Researches.....................1
1.2 Methodology and Modeling.........................3
Chapter 2 TRACE Code and Calculation Mechanism.......7
2.1 The TRACE Code...................................7
2.2 The 3D-VESSEL Component..........................8
2.3 Counter Current Flow Limitation Models...........9
2.4 Calculation of Pressure Gradient................12
2.4.1 Pressure Loss of the Wall Friction............12
2.4.2 Static Pressure...............................13
2.4.3 Reversible Pressure Losses....................13
2.4.4 Irreversible Pressure Losses..................13
2.5 The SEPD Component..............................15
2.6 The JETP Component..............................18
2.6.1 Pressure Losses of Jet Pumps..................20
2.6.2 Irreversible Pressure Loss of a Diffuser......20
2.6.3 Irreversible Losses of the Mixing, Nozzle, and Suction.............................................20
Chapter 3 Introduction of Chinshan Nuclear Power Plant...............................................28
3.1 Chinshan Nuclear Power Plant....................28
3.1.1 The Reactor Internal Components...............28
3.1.2 The Safety Related Facilities.................29
3.1.3 The Main Steam Lines..........................31
3.1.4 The Recirculation Coolant System..............32
3.2 The Mitigation Strategies of the Current ECC System..............................................33
3.3 The Extreme Accident of the Extended SBO Combined LOCA................................................35
Chapter 4 Scenarios and Methodology of LOCA.........43
4.1 Description of LBLOCA..........................43
4.1.1 The Blowdown Phase............................44
4.1.2 The Refill Phase..............................45
4.1.3 The Reflood Phase.............................45
4.2 Methodology.....................................45
4.3 Conservative Methodology........................47
4.4 Best Estimate Methodology......................54
4.4.1 Element One: Requirements and Code Capabilities........................................55
4.4.2 Element Two: Assessment and Ranging of Parameters..........................................55
4.4.3 Element Three: Sensitivity and Uncertainty Analysis............................................56
4.5 The Capability of LOCA Analysis with TRACE Code................................................56
Chapter 5 Establishment and Benchmarks of the Chinshan TRACE Model.........................................62
5.1 The TRACE Model of Chinshan Nuclear Power Plant.62
5.1.1 The 3D-VESSEL Component of the Reactor Vessel.62
5.1.2 The Core Area and the CHAN Component for the Fuel Bundles.............................................63
5.1.3 The SEPD Component for the Separators and Dryers..............................................64
5.1.4 Establishment of Two Recirculation Loops and Four Main Steam Lines....................................65
5.1.5 Establishment of the ECC Systems with the Driven Steam Simulated.....................................66
5.1.6 The Feedwater Control System..................67
5.2 Validation on the Pressure Drops of the Reactor Vessel and the Recirculation Loop..........................68
5.3 Validation on the Pressure Drops of the Main Steam Lines...............................................70
Chapter 6 Hypothetic Transient and LOCA Analysis....91
6.1 Load Rejection Test at 100% Power and 100% Core Flow................................................91
6.2 Turbine Trip Test at 83% Power and 75% Core Flow................................................105
6.3 Validation of Blowdown Phenomena on the Recirculation Loop.................................................110
6.4 The Double-Ended Guillotine Large Break LOCA and the Sensitivity Study of the Counter-Current Flow Limitation in the Fuel Zone........................................126
6.4.1 Descriptions of the LBLOCA.....................126
6.4.2 The CCFL Phenomenal in a LBLOCA................128
6.4.3 The Analysis Conditions of Chinshan NPP........129
6.4.4 Results and Discussions........................130
6.4.4.1 The DEG Break on the Recirculation Suction Line is More Serious.........................................133
6.4.4.2 The Transient of Core Flow...................133
6.4.4.3 The Curve of Peak Cladding Temperature.......135
6.4.4.4 The Impact of CCFL Effect on the Core Area...136
6.4.5 Conclusions....................................137
Chapter 7 The Alternate Mitigation Strategies on the Extended Station Blackout Accidents..................155
7.1 Alternate Mitigation Strategies on the Extreme Accidents of Fukushima-Daiichi Type Accident.........155
7.1.1 Description....................................155
7.1.2 The RCIC Injection Flow is Sufficient for an extended SBO without Break....................................155
7.1.3 Alternate Depression Method to Reduce the SRV Actuation Number.....................................156
7.1.4 RCIC Injection Flow is not Sufficient even with Only One SRV Stuck........................................157
7.2 The Alternate Mitigation Strategies on the Extreme Event of the LOCA and the SBO with the TRACE Chinshan BWR/4 Model................................................169
7.2.1 Descriptions of the Extreme Event of the LOCA and the SBO..................................................169
7.2.2 Methodologies..................................170
7.2.3 The Various Break Area on the Recirculation Suction Line.................................................172
7.2.4 The Sensitivity Study of the Scram Signals.....174
7.2.5 The Sensitivity Study to Increase the RCIC Injecting Mass Flow............................................175
7.2.6 The Sensitivity Study on the Earlier Injecting of the HPCI Flow............................................177
7.2.7 Discussions and Conclusions....................178
7.3 Sensitivity Study on the HPCI Injecting at the Different Side and the Same Side of the Broken Recirculation Loop in the Combined SBO and LOCA......199
7.3.1 Event Descriptions.............................199
7.3.2 Sensitivity Study on the HPCI Injecting at the Different Side and the Same Side of the Broken Recirculation Loop...................................201
7.3.3 Sensitivity Study on the CCFL Effect in the Downcomer Area.................................................203
7.3.4 Conclusions....................................204
Chapter 8 Conclusions and Suggestions................219
8.1 Conclusions......................................219
8.2 Suggestions......................................223
References...........................................225
[1]AREVA, 2001. “Realistic large break LOCA methodology”, [2]AREVA document EMF-2103(P) revision 0.
[3]AREVA, 2004. “Chinshan LOCA break spectrum analysis for [4]ATRUMTM-10 fuel with the EXAM BWR-2000 ECCS evaluation model”, AREVA Document EMF-3109 (P), revision 0.
[5]AREVA, 2004. “AREVA’s realistic large break LOCA analysis methodology”, Nuclear Engineering and Design 235 (2005) 1713–1725
[6]Bankoff, S.G., Lee, S.C., 1985. “Multiphase science and technology. In: A Critical Review of the Flooding Literature (2)”, Hemisphere, New York.
[7]Chen, C.Y. et al., 2013. “The alternate mitigation strategies on the extreme event of the LOCA and the SBO with the TRACE Chinshan BWR/4 model”, Nuclear Engineering and Design 256 (2013) 332–340
[8]Chen, C.Y. et al., 2013. “Sensitivity study on the counter-current flow limitation in the DEG LBLOCA with the TRACE code”, Annals of Nuclear Energy 57 (2013) 121–129
[9]Chen, C.Y. et al., 2013. “Sensitivity study on different break size with only high pressure ECC system available using TRACE Chinshan model”, The 15th International Topical Meeting on Nuclear Reactor Thermal - Hydraulics, Pisa, Italy, May 12-17, 2013, NURETH15-034
[10]Chen, C.Y. et al., 2012. “The TRACE modeling on the LBLOCA of the BWR/4 Chinshan NPP”, The 9th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9), Kaohsiung, Taiwan, September 9–13, 2012, NUTHOS9-234
[11]Chen, C.Y. et al., 2012. “The extreme event of the LOCA and extended SBO with the TRACE model of CHINSHAN BWR/4 NPP”, The 20th International Conference on Nuclear Engineering, Anaheim, California, USA, July 30 - August 3, 2012. ICONE20POWER2012-55351
[12]Chen, C.Y. et al., 2011. “Validation on the SEPD component of the TRACE Chinshan NPP model with startup tests”, ANS-2011-Winter Conference, Washington, DC, USA., October 30–November 3, 2011.
[13]Chen, C.Y. et al., 2010. “TRACE modeling of Chinshan NPP benchmark test”, ASME-ATI-UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems, Sorrento, Italy May 16–19, 2010.
[14]Cheng, Yi-Hsian et al., 2010. “An investigation of steam–water countercurrent flow in TRACE”, Annals of Nuclear Energy 37, 1378–1383.
[15]Crane Co., 1977. “Flow of Fluids through Valves, Fittings, and Pipes,” Metric Edition-SI Units of the Crane Manual, Technical Paper No. 410M, New York.
[16]Damerell, P.S., Simons, J.W., 1993. “NUREG/IA-0127: Reactor Safety Issues Resolved by The 2D/3D Program”, 1993
[17]GEZ-6415, 1977. “Chinshan Nuclear Power Station Units 1 and 2 Control Systems Design Report”, September 1977.
[18]G.Th. Analytis and P. Coddington, 2002. “Analysis and sensitivity studies of postulated SB-LOCAs in the Muhleberg (KKM) BWR/4 by TRAC-BF1,” Annals of Nuclear Energy 29 (2002) 1525-1549
[19]Hsu, W.S., Tang, J.R., 1997. “The Calculation Notes of the Startup Test Benchmark Analysis for the Chinshan RETRAN-02 model,” INER report, 1997.
[20]Hsu, Y.F., Liang, K.S., Hung, H.J., 2005. “Development of the REPAP5-3DK LOCA Model for Chinshan Nuclear Power Plant”, INER-A0695R, 2005.
[21]Idel’Chik, 1960, “Handbook of Hydraulic Resistance, Coefficients of Local Resistance and of Friction”, National Technical Information Service Report NTIS AEC-TR-6630, p. 139, 1960.
[22]Improved Technical Specifications, 2003. “Chinshan Nuclear Power Station Units 1 & 2”, Amendment 1, August 2003.
[23]Issa, A.Al., Macian, R., 2011. “A review of CCFL phenomenon”, Annals of Nuclear Energy 38, 1795–1819.
[24]Jeong, Hae Yong, 2002. “Prediction of counter-current flow limitation at hot leg pipe during a small-break LOCA”, Annals of Nuclear Energy 29, 571–583.
[25]Kao, L., Chiang, S.C., 2005. “Peach bottom turbine trip simulations with RETRAN using INER/TPC BWR transient analysis method”, Nucl. Technol. 149, 265–280.
[26]Liu, C.P., McCarthy, G.E., Tien, C.L., 1982. “Flooding in vertical gas-liquid countercurrent flow through multiple short path”, International Journal of Heat and Mass Transfer 25 (9), 1301–1312.
[27]McFadden, J.H., et al., 1981. “RETRAN-02:A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow System”, EPRI–NP–1850–CCM.
[28]M.Y. Young, et al., 1998. “Application of code scaling applicability and uncertainty methodology to the large break loss of coolant”, Nuclear Engineering and Design 186 (1998) 39–52.
[29]Robert P. Martin, Larry D. O’Dell, 2005. “AREVA’s realistic large break LOCA analysis methodology”, Nuclear Engineering and Design 235 (2005) 1713–1725
[30]S.Al Issa, R. Macian, 2011. “A review of CCFL phenomenon”, Annals of Nuclear Energy 38 (2011) 1795–1819
[31]Taipower, 2002. “Final Safety Analysis Report, Chinshan Nuclear Power Station Units 1 & 2”, Amendment 12, October 2002.
[32]Takahashi, T., Akagi, Y., Kisimoto, T., 1979. “Gas and liquid velocities at incipient liquid stagnant on a sieve tray”, International Chemical Engineering 19 (1), 113–118.
[33]Takeuchi, K. et al., 1998. Analyses of subcooled CCFL tests for evaluation of WCOBRA/TRAC applicability, Nuclear Engineering and Design 1998 127–140.
[34]Tang, J.R., Hsu, W.S., 1997. “The calculation notes of the startup test benchmark analysis for the Chinshan RETRAN-02 model”, INER report, 1997.
[35]Technical Specifications, 2000. “Chinshan Nuclear Power Station Units 1 & 2”, Amendment 23, October 2000.
[36]Technical Program Group (TPG), 1989. “NUREG/CR-5249, Quantifying Reactor Safety Margins”, EGG-2552, 1989.
[37]Thomas K.S. Liang , Chin-Jang Chang, Huan-Jen Hung , 2002. “Development of LOCA licensing calculation capability with RELAP5-3D in accordance with Appendix K of 10 CFR 50.46,” Nuclear Engineering and Design 211 (2002) 69–84
[38]USNRC, 2010. “TRACE V5.0 Theory Manual”, Division of Safety Analysis, Office of Nuclear Regulatory Research.
[39]USNRC, 1989. “Regulatory Guide 1.157, Best Estimate Calculation of Emergency Core Cooling System Performance,” May 1989
[40]USNRC, 1989. “NUREG/CR-5249, Quantifying Reactor Safey Margins: Application of Code Scaling, Applicability, and Uncertainty Evaluation Methodology to a Large-Break, Loss-of-Coolant Accident”, December 1989
[41]USNRC, 1988. " NUREG-1230, Compendium of ECCS Research for Realistic LOCA Analysis," December 1988.
[42]Wallis, G.B., 1969. “One Dimensional Two Phase Flow”. McGraw-Hill, New York, 1969.
[43]Wang, J.R. et al., 2011. “The Inadvertent Startup of Chinshan BWR/4 using TRACE,” ANS-2011-Winter Conference, Washington, DC, USA., October 30–November 3, 2011
[44]陳俊宇,「PCTRAN-ABWR緊急爐心冷卻系統模式擴充」,清華大學,碩士論文,中華民國九十五年
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *