帳號:guest(54.167.199.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉柏男
作者(外文):Yeh, Po Nan
論文名稱(中文):高效率大面積串聯式高分子太陽能電池與鈣鈦礦太陽能電池之研究
論文名稱(外文):Studies on Tandem Polymer Solar Cell with Large Active Area and Perovskite Solar Cell for High Performance
指導教授(中文):陳壽安
指導教授(外文):Chen, Show An
口試委員(中文):林金福
陳信龍
任慈浩
郭欽湊
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9632528
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:167
中文關鍵詞:高分子太陽能電池鈣鈦礦太陽能電池串聯式高分子太陽能電池
外文關鍵詞:polymer solar cellperovskite solar celltandem polymer solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:332
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文以提高高分子及鈣鈦礦太陽能電池效率為主旨,主要可分成三部份。前兩部份為反式串聯式高分子太陽能電池中間層PEDOT:PSS成膜性的研究,並有效改善大面積元件的效率。第三部份為利用溶劑退火方式來製作高效率鈣鈦礦太陽能電池,並從中了解含浸法中不同CH3NH3I (MAI)濃渡下,鈣鈦礦的成長機制。
在第五章中,我們提出蒸鍍超薄金屬層(Au and Ag)在活性層P3HT:ICBA與PEDOT:PSS之間,改善PEDOT在疏水性活性層上的成膜性。其中超薄金屬層Ag能使元件的效率增加,但Au會使元件效率下降,因為Au會使活性層的ionized potential 從4.54 eV減小到4.14 eV,導致電洞會累積在活性層與PEDOT:PSS的界面上,不利電洞傳遞。我們製作反式串聯式高分子太陽能電池,活性層由P3HT:ICBA和PTB7:PC71BM所組成,中間層為PEDOT:PSS/ZnO nanoparticle。在小面積的元件上,當加入了超薄金屬層Ag,效率可從7.06 %提升到7.81 %,而超薄金屬層Au的元件,其效率下降到 6.4 %;在當元件面積增加1 cm2時,加入了Ag的中間層其效率為6.11 %,相較於以PEDOT/ZnO np當中間層的元件(2.12 %),元件效率提升了2.78倍。
在第六章中,我們利用醇類來處理活性層(P3HT:ICBA)的表面,使表面親水性增加,讓PEDOT:PSS在活性層上的成膜性得到改善。在元件面積為0.02 cm2下,用 1-hexanol處理過的反式串聯式高分子太陽能電池,其效率可以從7.06 %提升到8.10 %。在大面積1 cm2時,P3HT:ICBA表面經過1-hexanol處理過的元件效率仍維持7.00 %,遠高於沒有處理的元件2.18 %。此外,相較於先前引進超薄金屬層Ag的方法,醇類處理的方法更為簡單且能降低製作成本及縮短製程時間。
在第七章中,我們提出溶劑退火的方式來改變PbI2薄膜的形態並製作成鈣鈦礦元件,我們發現利用溶劑退火的方式會增加PbI2的結晶,使薄膜產生較大較深的孔洞。在濃度為10 mg/mL的MAI中進行含浸時,因為MAI會快速和表面的PbI2反應形成CH3NH3PbI3,阻礙了MAI擴散至PbI2的內部;PbI2薄膜沒有溶劑退火的處理時,其元件效率只有1.08 %,當元件經過5分鐘以上的溶劑退火處理後,元件效率最高效率可達16.07 %,這結果說明了PbI2表面的孔洞大小和深度是影響元件效率的主要因素。當PbI2薄膜含浸在低濃度MAI(6 mg/mL)時,PbI2薄膜表面並不會快速生成CH3NH3PbI3,使得MAI有時間能擴散到PbI2薄膜的內部;因此,沒有溶劑退火的元件其效率為13.37 %,與溶劑退火的元件其效率為14.3 %,兩者差異不大,這說明了PbI2薄膜表面的孔洞大小就不在是影響元件效率的主要因素。
The object of this thesis is to enhancement of the device performances of tandem polymer and perovskite solar cells, and the contents are divided into three topics. In the first two sections, we study on the film formation quality of aqueous hole-transport interlayer on hydrophobic active layer in the inverted tandem polymer solar cells, leading to significantly elevated performance for the large area devices. In the last section, we obtain high performance of perovskite solar cell by solvent annealing of the PbI2 film, and realize the growth mechanism of perovskite with dipping in various concentrations of CH3NH3I (MAI).
In chapter 5, we propose the deposition of ultra-thin silver or gold layer (in subnano-scale) between bottom subcell and the hole-transport sublayer in the interlayer (IL), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), in the inverted tandem polymer solar cell (t-PSC) for improving the wettability of aqueous hole-transport interlayer on hydrophobic active layer. The ultra-thin sliver layer can improve device performance, but the ultra-thin gold layer induces a significant decrease of ionized potential from 4.54 eV to 4.14 eV leading to an accumulation of holes at (regioregular poly(3-hexylthiophene) (P3HT) side in the interface of P3HT/PEDOT:PSS, which decreases the device performance. In the inverted t-PSCs (small-area, 0.02 cm2) composed of the bottom subcell P3HT: indene-C60-bisadduct (ICBA)), the top subcell (thieno[3,4-b]thiophene/benzodithiophene (PTB7) with [6,6]-phenyl C71-butyric acid methyl ester (PC71BM)) and the IL, PEDOT:PSS/ZnO nanoparticles, the power conversion efficiency (PCE) is improved from 7.06 % (without any ultra-thin metal layer) to 7.81 % with 0.5 nm Ag layer but decreases to 6.4 % with 1nm Au layer. As enlarging the active area to 1 cm2, the PCE of 0.5 nm Ag device is still over 6 % (6.11 %) much higher than that without Ag layer (2.19 %) by a factor of 2.78.
In chapter 6, we treat the active layer (P3HT:ICBA) surface by alcohols for hydrophiles leading to high-quality film of the next spin-coated PEDOT:PSS layer. For the small-area (0.02 cm2) inverted t-PSC, the PCE can be enhanced from 7.06 % to 8.10 % by 1-hexanol treatment. As enlarging the active area to about 1 cm2, the device with 1-hexanol treatment still performs 7.00 % high PCE, which is much better than that without any treatment (2.19 %). In addition, the main advancement of this work is the use of low cost material (1-hexanol) and low cost fabrication process (spin coating) as compared to depositing 0.5 nm Ag layer on active layer, in which the high cost material (silver) and high cost deposition process (vacuum thermal deposition) are used.
In chapter 7, we demonstrate that treatment of the PbI2 films with solvent annealing can change the surface morphology with large and deeper porous due to increasing PbI2 crystallinity. For PbI2 film dipped into 10 mg/mL CH3NH3I (MAI) solution, crystals of CH3NH3PbI3 are quickly formed on the surface of PbI2 and inhibit MAI to further penetrate into the PbI2 film. Therefore, PbI2 film with large and deep porous surface can form more crystals of CH3NHPbI3. The PCE of the device with solvent annealing treatment for over 5 min is enhanced from 1.08 % to 16.07 %. For PbI2 film dipped into low concentration 6 mg/mL CH3NH3I (MAI) solution, crystals of CH3NH3PbI3 form slowly on PbI2 surface, which provide the MAI enough time going through surface to inside PbI2 film. Thus, the PCE of solvent annealed treatment device (14.3 %) is similar to that without treatment (13.37 %), demonstrating that the factor of the PbI2 morphology can be minimized.
摘 要 I
Abstract III
目 錄 V
圖目錄 VIII
表目錄 XVII

第一章 緒論 1
1-1 前言 1
1-2 共軛導電高分子定義及其應用 2
1-3 共軛導電高分子的電子狀態理論 4
1-4 高分子太陽能電池 10
1-4-1 太陽能光譜 10
1-4-2 高分子太陽能電池的原理 13
1-4-3 有機太陽能電池的參數 15

第二章 文獻回顧 19
2-1 有機太陽能電池結構演進 19
2-2 反式太陽能電池發展 22
2-3 高效率太陽能電池之高分子材料 30
2-4 同族元素的效應 44
2-5 串聯式結構 (Tandem cell) 47
2-6 鈣鈦礦太陽能電池 (Perovskite solar cell) 65
2-6-1 鈣鈦礦晶體結構 65
2-6-2 鈣鈦礦太陽能電池特性 65
2-6-3 改變鈣鈦礦的鹵素對其光電、吸收、能階之影響 67
2-6-4 改變二價金屬離子對鈣鈦礦的光電性質之影響 70
2-6-5 改變鈣鈦礦中的一價化合物對其光電性質之影響 72
2-6-6 鈣鈦礦太陽能電池的製作方法 73
2-6-7 以ZnO為電子傳遞層之鈣鈦礦太陽能電池 88
2-7文獻分析與討論 92

第三章 研究動機與構想 94
3-1 大面積反式串聯式高分子太陽能電池之製作 94
3-2在ZnO上使用含浸法製作高效率鈣鈦礦太陽能電池之探
討 95

第四章 實驗內容 96
4-1 藥品 96
4-2 合成氧化鋅奈米粒子製備 98
4-3 儀器設備 98
4-4 太陽電池元件製作 100
4-4-1 中間層含超薄金屬層的反式串聯式高分子太陽能電池元件製作 100
4-4-2 利用醇類改善PEDOT:PSS成膜性的反式串聯式高分子太陽能電池元件製作 101
4-4-3 Perovskite元件製作 102
4-5 元件特性之量測 102

第五章 利用超薄金屬層來改善PEDOT的成膜性並製作大面積反式 串聯式高分子太陽能電池 104
5-1 PEDOT:PSS成膜性的探討 105
5-2 活性層P3HT:ICBA與水及PEDOT接觸角實驗 107
5-3 金屬膜厚對UV-Vis光穿透的影響 108
5-4 探討金屬薄膜層在P3HT:ICBA上的表面分析 109
5-5 光伏元件的探討 110
5-6 結論 117

第六章 經由alcohol處理之全溶液製程大面積反式串聯式高分子太陽能電池 118
6-1 PEDOT:PSS在活性層P3HT:ICBA的表面成膜性探討 118
6-2 吸收光譜圖和AFM的探討 121
6-3 太陽能元件特性 123
6-4 結論 130

第七章 含浸法中鈣鈦礦(CH3HN3PbI3)在ZnO上的生成機制探討 131
7-1探討溶劑退火對PbI2的表面形態與結晶度的影響 131
7-2溶劑退火時間對鈣鈦礦的Uv-Visble吸收光譜的探討 134
7-3溶劑退火時間對元件效率的探討 140
7-5結論 148

第八章 總結與本研究之原創性工作 149

參考文獻 150
著作目錄 166
[1] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses1, M. Leclerc, K. Lee and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat. Photonics., 2009, 3, 297.
[2] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency”, Nat. Photonics., 2009, 3, 649.
[3] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, “ Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency”, Angew. Chem. Int. Ed. 2011, 50, 2995.
[4] T. Y. Chu, J. Lu, S. Beaupr’e, Y. Zhang, J-R Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and Y. Tao,“ Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:20,30-d]silole Copolymer with a Power Conversion Efficiency of 7.3%”, J. Am. Chem. Soc. 2011, 133, 4250.
[5] J. C. W. Chien, “Polyacetylene: Chemistry, Physics, and Material Science,” Academic Press, Orlando (1984).
[6] A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern Plastics Int., Aug. (1991) 33.
[7] M. Pope, H. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042.
[8] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 1987, 51, 913.
[9] A. Moliton and J.-M. Nunzi, “Review How to model the behaviour of organic photovoltaic cells:, Polym. Int., 2006, 55, 583.
[10] M. Knupfer, “Exciton binding energies in organic Semiconductors”, Appl. Phys. A, 2003, 77, 623.
[11] T. J. Savenije, J. M. Warman and A. Goossens, “Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer”, Chem. Phys. Lett., 1998, 287, 148.
[12] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell”, Appl. Phys. Lett., 1996, 68, 3120.
[13] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M. R. Andersson and O. Ingänas, “Photoluminescence quenching at a polythiophene/C60 heterojunction”, Phy. Rev. B, 2000, 61, 12957.
[14] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science, 1992, 258, 1474.
[15] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 2001, 79, 126.
[16] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Appl. Phys. Lett., 2002, 80, 1288.
[17] H. Hoppe and N. S. Sariciftci, “Polymer Solar Cells”, Adv. Polym. Sci., 2008, 214,1.
[18] H. Hoppe and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells”, J. Mater. Chem., 2006, 16, 45.
[19] X. Yang and J. Loos, “Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control”, Macromolecules, 2007, 40, 1353.
[20] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)“, J. Appl. Phys., 2005, 98, 043704.
[21] D. Chirvase, J. Parisi, J. CHummelen and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites”, Nonotechnology, 2004, 15, 1317.
[22] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells”, Adv. Funct. Mater., 2001, 11, 374.
[23] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells” J. Appl. Phys., 2003, 94, 6849.
[24] K. M. Coakley and M. D. McGehee, “Conjugated Polymer Photovoltaic Cells”, Chem. Mater., 2004, 16, 4533.
[25] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 1986, 48, 183.
[26] N. S. Sariciftci, D. Braun, and C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, hotodiodes, and photovoltaic cells”, Appt. Phys. Lett., 1993, 62, 585.
[27] G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 1995, 270,1789.
[28] M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate) in polymer light-emitting diodes”, Appl. Phys. Lett. 2000, 77, 2255.
[29] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley. “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer”, Appl. Phys. Lett. 2006, 89, 143517.
[30] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, “Efficient inverted polymer solar cells”, Appl. Phys. Lett. 2006, 88, 253503.
[31] A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao and D.L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, Appl. Phys. Lett.2008, 93, 221107.
[32] J.S. Huang, C.Y. Chou, M.Y. Liu, K.H. Tsai, W.H. Lin and C.F. Lin, “Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods” Org. Electron. 2009, 10, 1060.
[33] J-S Huang, C-Y Chou, C-F Lin, “Enhancing performance of organic–inorganic hybrid solar cells using a fullerene interlayer from all-solution processing”, Sol. Energy Mater. Sol. Cells 2010, 94, 182.
[34] D. W. Zhao, S.T.Tan, L. Ke, P. Liu a, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, D. L. Kwong, “Optimization of an inverted organic solar cell”, Sol. Energy Mater. Sol. Cells 2010, 94, 985.
[35] C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, C.-S. Hsu, “Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer”, J. AM. CHEM. SOC. 2010, 132, 4887.
[36] S. K. Hau, Y.-J. Cheng, H.-L. Yip, Y. Zhang, H. Ma, A. K.-Y. Jen, “Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells”, Appl. Mater. and Interfaces 2010, 2, 1892.
[37] Y.-J. Cheng, F.-Y. Cao, W.-C. Lin, C.-H. Chen, C.-H. Hsieh, “Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells”, Chem. Mater. 2011, 23, 1512.
[38] N. Cho, H.-L. Yip, S. K. Hau, K.-S. Chen, T.-W. Kim, J. A. Davies, D. F. Zeigler, A. K.-Y. Jen, n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells, J. Mater. Chem. 2011, 21, 6956.
[39] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater. 2005, 15, 1617.
[40] M. Reyes-Reyes, K. Kim, D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-3-methoxycarbony-propyl-1- phenyl-(6,6)C61 blends”, Appl. Phys. Lett. 2005, 87, 083506.
[41] A. J. Moulé and K. Meerholz, “Controlling Morphology in Polymer–Fullerene Mixtures”, Adv. Mater. 2008, 20, 240.
[42] Y.J. Cheng, S.-H. Yang, C.-S. Hsu, “Synthesis of Conjugated Polymers for Organic Solar Cell Applications” Chem. Rev. 2009, 109, 5868.
[43] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, “Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc. 2008, 130, 3619.
[44] J. Hou, H.-Y. Chen, S. Zhang, G. Li and Y. Yang,” Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole”, J. Am. Chem. Soc. 2008, 130, 16144.
[45] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger,“ Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%”, Nat. Photo. 2009, 3, 297.
[46] Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu,“ Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties”, J. Am. Chem. Soc. 2009, 131, 7792.
[47] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Fre´chet,“ Synthetic Control of Structural Order in N-Alkylthieno [3,4-c]pyrrole-4,6- dione-Based Polymers for Efficient Solar Cells”, J. Am. Chem. Soc. 2010, 132, 7595.
[48] E. Wang, L. Hou, Z. Wang, S. Hellström, F. Zhang, O. Inganäs and M. R. Andersson,“ An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells”, Adv. Mater. 2010, 22, 5240.
[49] H. Zhou, L. Yang, S. C. Price, K. J. Knight and W. You, “Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels”, Angew. Chem. Int. Ed. 2010, 49, 7992.
[50] J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, “Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer”, J. Am. Chem. Soc., 2011, 133, 8416.
[51] S. C. Price, A. C. Stuart, L. Yang, H. Zhou and W. You,“ Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells”, J. Am. Chem. Soc. 2011, 133, 4625.
[52] C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, “Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc. 2011, 133, 10062.
[53] Y. Sun , C. J.Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy and A. J. Heeger, “Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer”, Adv. Mater. 2011, 23, 2226.
[54] A. M. Ballantyne, L. Chen, J. Nelson, D. D.C. Bradley, Y. Astuti, A.Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy, I. McCulloch, “Studies of Highly Regioregular Poly(3-hexylselenophene) for Photovoltaic Applications”, Adv. Mater. 2007, 19, 4544
[55] J. Hou, T. L. Chen, S.Zhang, H.-Y. Chen, Y. Yang, “ Poly[4,4-bis(2-ethylhexyl) cyclopenta[2,1-b;3,4-b′]dithiophene-2,6- diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells”, J. Phys. Chem. C, 2009, 113, 4, 1601
[56] M. C. Scharber, M. Koppe, J. Gao, F. Cordella, M. A. Loi, P. Denk, M. Morana, H,-J, Egelhaaf, K. Forberich, G. Dennler, R. Gaudiana, D. Waller, Z. Zhu, X. Shi, C. J. Brabec, “Influence of the Bridging Atom on the Performance of a Low-Bandgap Bulk Heterojunction Solar Cell”, Adv. Mater. 2010, 22, 367.
[57] K. Kawano, N. Ito, T. Nishimori, J. Sakai, “Open circuit voltage of stacked bulk heterojunction organic solar cells”, Appl. Phys. Lett. 2006, 88, 073514.
[58] A. Hadipour, B. Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M.u G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, “Solution-Processed Organic Tandem Solar Cells”, Adv. Funct. Mater. 2006, 16, 1897.
[59] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science 2007, 317, 222.
[60] J. Gilot, M. M. Wienk, R. A. J. Janssen, “Optimizing Polymer Tandem Solar Cells”, Adv. Mater. 2010, 22, E67–E71.
[61] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, “Highly Efficient Tandem Polymer Photovoltaic Cells”, Adv. Mater. 2010, 22, 380.
[62] J. Sakai, K. Kawano, T. Yamanari, T.Taima, Y. Yoshida, A. Fujii, M. Ozaki, “Efficient organic photovoltaic tandem cells with novel transparent conductive oxide interlayer and poly (3-hexylthiophene): Fullerene active layers”, Sol. Energy Mater. Sol. Cells 2009, 94, 376.
[63] D.W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, D. L. Kwong, “An Efficient Triple-Tandem Polymer Solar Cell”, IEEE Trans. Electron. Devices 2009, 30, 490.
[64] S. K. Hau, H.-L. Yip, K.-S. Chen, J. Zou, A. K.-Y. Jen, “Solution processed inverted tandem polymer solar cells with selfassembled monolayer modified interfacial layers”, Appl. Phys. Lett. 2010, 97, 253307.
[65] X. W. Sun, D. W. Zhao, L. Ke, A. K. K. Kyaw, G. Q. Lo, D. L. Kwong, “Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer”, Appl. Phys. Lett. 2010, 97, 053303.
[66] C.-H. Chou , W. L. Kwan , Z. Hong , L.-M. Chen , Y. Yang, “A Metal-Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture”, Adv. Mater. 2011, 23, 1282.
[67] S. Kouijzer, S. Esiner, C. H. Frijters, M. Turbiez, M. M. Wienk, R. A. J. Janssen, “Efficient Inverted Tandem Polymer Solar Cells with a Solution-Processed Recombination Layer”, Adv. Energy Mater. 2012, 2, 945–949
[68] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer”, Nat. Photon. 2012, 180-185.
[69] L. Dou, W.-H. Chang, J. Gao, C.-C Chen, J. You, Y. Yang, “A Selenium-Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications”, Adv. Mater. 2013, 25, 825–831.
[70] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Commun. 2013, 1-10.
[71] M. Grätzel, “The light and shade of perovskite solar cells”, Nature Mater., 2014, 13, 838.
[72] S. Kazim, M. K. Nazeeruddin, M. Gratzel, S. Ahmad, “Perovskite as Light Harvester: A Game Changer in Photovoltaics”, Angew. Chem. Int. Ed. 2014, 53, 2812-2824.
[73] T. Ishihara, “Optical properties of PbI-based perovskite structures”, J. Lumin., 1994, 60, 269
[74] W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, H. J. Snaith, “Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles” Nano Lett., 2013, 13, 4505.
[75] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science, 2013, 342, 341.
[76] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells”, Nano Lett., 2013, 13, 1764.
[77] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, “Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells”, J. Am. Chem. Soc. 2014, 136, 8094.
[78] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci., 2014, 7, 982.
[79] J. You, Z. Hong, Y. (M.) Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, “Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility”, ACS Nano, 2014, 8, 1674.
[80] G. E. Eperon , V. M. Burlakov , P. Docampo , A. Goriely , H. J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells”, Adv. Func. Mater., 2014, 24, 151.
[81] P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Y. Jen, “Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells”, Adv. Mater., 2014, 26, 3748.
[82] H. Zhou, Q. Chen, G. Li, S. Luo, T. b. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science, 2014, 345, 542.
[83] J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, 2013, 499, 316.
[84] D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nat. Photonics, 2014, 8, 133.
[85] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci., 2014, 7, 2619.
[86] C. H. Chiang, Z. L. Tseng, C. G. Wu, “Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process”, J. Mater. Chem. A, 2014, 2, 15897
[87] K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. G. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, T. C. Wen, “p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells”, Sci. Rep., 2014, 4, 4756.
[88] Q. Chen, H. Zhou. Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc., 2014, 136, 622.
[89] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 2013, 501, 395.
[90] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, H. W. Lin, “Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition”, Adv. Mater., 2014, 26, 6647.
[91] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, “ZnO Nanostructures for Dye-Sensitized Solar Cells”, Adv. Mater., 2009, 21, 4087.
[92] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells”, Nature Nanotech. 2014, 9, 927.
[93] M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, N. Mathews, “Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells”, Chem. Commun., 2013, 49, 11089.
[94] D. Bi,a G. Boschloo, S. Schwarzm¨uller, L. Yang, E. M. J. Johanssona, A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells”, Nanoscale, 2013, 5, 11686.
[95] X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, “The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures” Chem. Commun. 2014, 50, 14405.
[96] D. Liu, M. K. Gangishetty, T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells”, J. Mater. Chem. A, 2014, 2, 19873.
[97] W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells”, J. Am. Chem. Soc., 2013, 135, 5529.
[98] J.C. Love, L. A. Estroff, J. K. Kriebel, R.G.Nuzzo, G.. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology”, Chem. Rev. 2005, 105, 1103–1169.
[99]C. Majumder, T. M. Briere, H. Mizuseki, Y. Kawazoe, “Structural investigation of thiophene thiol adsorptionon Au nanoclusters: influence of backbonds”, J. Chem. Phys. 2002, 117, 2819–2822.
[100] X. X. Chen, E. R. Frank, R. J. Hamers, “Adsorption of sulfur and 1,3-butanediol on silver thin films using atomic resolution reduced temperature scanning tunneling microscopy”, J. Vac. Technol. A 1994, 12, 2091–2096.
[101] M. Schnippering ,M. Carrara, A. Foelske, R. Kötz, D. J. Fermίn, “Electronic properties of Ag nanoparticle arrays. A Kelvin probe and higher solution XPS study”, Phys. Chem. Chem. Phys. 2007, 9, 725–730.
[102] Research Cell Efficiency Records. NREL (http://www.nrel.gov/ncpv/)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *