帳號:guest(3.128.94.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱瑞霖
作者(外文):Chu, Rei-Lin
論文名稱(中文):銻化物半導體於三五族互補式金氧半元件之應用
論文名稱(外文):Antimonide-based compound semiconductors for III-V CMOS technology
指導教授(中文):洪銘輝
黃倉秀
指導教授(外文):Hong, Minghwei
Huang, Tsung-Shiew
口試委員(中文):綦振瀛
皮敦文
郭瑞年
楊育佳
口試委員(外文):Jen-Inn Chyi
Tun-Wen Pi
Raynien Kwo
Yee-Chia Yeo
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9631583
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:162
中文關鍵詞:銻化鎵氧化釔分子束磊晶金氧半場效電晶體
外文關鍵詞:GaSbY2O3MBEMOSFET
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銻化物半導體因具有大範圍可調變能隙以及三五族半導體間優異的載子遷移率而成為現今相當受矚目的材料,其主要的應用範圍包含7到5奈米以下節點技術之高速低耗能互補式金氧半元件、軍事及生醫產業所使用之紅外線感測器以及綠能產業所發展的太陽能電池。然而,即便目前對於利用銻化物半導體材料來了解操作在超低電壓(小於0.5伏特)下之高效能電晶體的需求與日俱增,卻依然無法得到一個具有低介面缺陷密度以及良好熱穩定性的高介電係數氧化物與銻化(銦)鎵之介面。
在此篇論文中,我們利用分子束磊晶和原子層沉積技術成長氧化釔薄膜於銻化鎵基板上,不僅成功鈍化銻化鎵表面,也得到一個熱穩定性高於攝氏500度以上及具有良好鍵結的高介電係數氧化物與銻化鎵介面。我們透過介面化學鍵結及電性來分別比較利用分子束磊晶和原子層沉積成長之氧化釔薄膜所造成的差異。此外,我們也將探討在不同成長溫度下使用分子束磊晶成長之氧化釔薄膜對於介面特性和元件效能所造成的影響。氧化釔與銻化鎵介面的化學鍵結以及介面化學反應將透過臨場角解析X射線光電子能譜觀察。此外,氧化釔與銻化鎵介面的電性也將藉由電容-電壓特性量測、閘極漏電流-電場特性量測、變溫電導-電壓量測分析以及Gray-Brown方法分析來討論並求得介面缺陷密度。最後,我們製作了自我對準反轉通道層銻化鎵P型金氧半場效電晶體,並得到目前在此相關領域內最佳之元件特性,包括飽和汲極電流 130 A/m、最大轉移電導 90 S/m、低的次臨界擺幅 147 mV/decade以及最大場效電洞遷移率 200 cm2/V-s 於閘極線寬為1 μm的元件中。
Antimonide-based compound semiconductors are emerging materials for the high-speed low-power electronics in complementary metal-oxide-semiconductor (CMOS) industry beyond 7-5 nm node technology, mid-infrared sensors/detectors in military/medical industry, and solar cells in green energy industry, due to their wide range of tunable band gaps and high carrier mobilities among the III-V compound semiconductors. However, despite the increasing demand in antimonide-based material system for realizing the high performance transistors operated at ultra-low driving voltage (< 0.5 V), the attainment of a high-/(In)GaSb interfaces possessing the low interfacial density of states (Dit) as well as the acceptable thermal stability has yet been achieved.
In this dissertation, by depositing the rare-earth oxide, Y2O3, via molecule beam epitaxy (MBE) and atomic layer deposition (ALD), respectively, we have succeeded in passivating the GaSb(100) surface, which forms a thermally stable (> 500 oC) and well-bonded high-/GaSb interface. A detailed comparison between the samples with Y2O3 deposited by MBE and ALD, respectively, has been carried out with respect to the interface chemical bondings and electrical properties. Moreover, dependence of the deposition temperatures of MBE-Y2O3 to the interfacial properties and related MOS device performance has also been discussed. The corresponding chemical bondings and subsequent reactions for the Y2O3/GaSb interface were studied using in situ angle-dependent X-ray photoelectron spectroscopy (XPS). Moreover, the electrical properties for the Y2O3/GaSb interface were studied in terms of the conventional capacitance-voltage (C-V) and leakage current density-electric field (Jg-Eg) characteristics along with the temperature-dependent conductance method (CM) measurements and Gray-Brown (G-B) method analysis for the interfacial density of states (Dit) extraction. Consequently, the self-aligned inversion channel GaSb p-MOSFETs have been fabricated and yielded a record high saturation drain current density (Id,sat) of 130 A/m and maximum transconductance (Gm,max) of 90 S/m. Besides, a low subthreshold slope (S.S.) of 147 mV/decade and a peak field-effect hole mobility (h,FE) of 200 cm2/V-s were also obtained from the GaSb p-MOSFETs with 1 μm-gate-length.
Table of Contents
Acknowledgement i
Publication List iii
Abstract vii
Table of Contents xi
List of Figures xiv
List of Tables xx

Chapter 1 Introduction 1
1.1 Advantages of III-V compound semiconductors for CMOS application 1
1.2 Critical issues in III-V CMOS technology 5
1.2.1 Oxide/III-V interface 6
1.2.2 Balance between NMOS and PMOS 7
1.3 Challenges for GaSb surface passivation 9
Chapter 2 Experiment 14
2.1 Wafer preparation 15
2.1.1 Growth of GaSb fresh layer 15
2.1.2 Molecule Beam Epitaxy deposition of Y2O3 17
2.1.3 Atomic Layer Deposition of Y2O3 and Al2O3 20
2.2 MOS devices Fabrication 23
2.2.1 MOSCAPs fabrication 24
2.2.2 Self-aligned inversion channel MOSFETs process flow 24
2.2.3 Dry etching process for high- dielectrics 28
2.3 Interfacial property analysis 31
2.3.1 In situ angle-dependent x-ray photoelectron spectroscopy 31
2.3.2 Electrical measurements for MOS devices 35
2.3.3 Temperature-dependent electrical measurements 39

Chapter 3 Chemical and electrical characteristics of MBE-Y2O3 on GaSb interface 45
3.1 RT-Y2O3/GaSb Hetero-structure 45
3.1.1 Characteristics of RT-Y2O3/GaSb interface 45
3.1.2 Electrical properties of ALD-Al2O3/RT-Y2O3/GaSb MOSCAPs 51
3.2 HT-Y2O3/GaSb Hetero-structure 64
3.2.1 Characteristics HT-Y2O3/GaSb interface 64
3.2.2 Electrical properties of ALD-Al2O3/HT-Y2O3/GaSb MOSCAPs 66
3.3 Summary 70

Chapter 4 Chemical and electrical characteristics of ALD high- dielectrics on GaSb interface 72
4.1 ALD-Al2O3/GaSb Hetero-structure 72
4.1.1 Characteristics of ALD-Al2O3/GaSb interface 72
4.1.2 Electrical properties of ALD-Al2O3/GaSb MOSCAPs 74
4.2 ALD-Y2O3/GaSb Hetero-structure 77
4.2.1 Characteristics of ALD-Y2O3/GaSb interface 77
4.2.2 Electrical properties of ALD-Al2O3/ALD-Y2O3/GaSb MOSCAPs 79
4.3 Comparison of interfacial properties between Y2O3 deposited by different
techniques (MBE and ALD) 84
4.4 Summary 85


Chapter 5 Self-aligned inversion-channel GaSb MOSFETs 86
5.1 Dry etching for Al2O3 and Y2O3 86
5.2 Ni (TiN) /ALD-Al2O3/RT-Y2O3/n-GaSb self-aligned inversion channel
MOSFETs 89
5.3 Optimization for Source/Drain contact formation 94
5.4 TiN/ALD-Al2O3/HT-Y2O3/n-GaSb self-aligned inversion channel
MOSFETs 97
5.5 Summary 102

Chapter 6 Conclusions and Outlook 104

Reference 109

Appendix I Sub-m gate-length self-aligned inversion channel TiN/ALD-Al2O3 (3 nm)/ALD-HfO2 (1 nm)/In0.53Ga0.47As (100) nMOSFETs fabrication.….....…………………..115

Appendix II High-quality MBE-grown Ga2O3(Gd2O3) on Ge (100) electrical and chemical characterizations….....….….131

Appendix III Greatly improved interfacial passivation of in-situ high  dielectric deposition on freshly grown molecule beam epitaxy Ge epitaxial layer on Ge(100) ….....……..…..146
References
1 G. E. Moore, Proc. IEEE 86, 82 (1998).
2 Gorden E. Moore, Intel Corporation, 1 (2005).
3 International Technology Roadmap of Semiconductor.
4 http://www.phy.cuhk.edu.hk/hkwong/phy3202/materials/index.php.
5 J. A. del Alamo, Nature 479, 317 (2011).
6 S. Takagi and M. Takenaka, in Dielectrics in Nanosystems -and- Graphene, Ge/Iii-V, Nanowires and Emerging Materials for Post-Cmos Applications 3, edited by Z. Karim, P. Srinivasan, S. DeGendt et al. (Electrochemical Soc Inc, Pennington, 2011), Vol. 35, pp. 279.
7 W. E. Spicer, I. Lindau, P. Skeath, and C. V. Su, J. Electrochem. Soc. 127, C391 (1980).
8 C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 92, 071901 (2008).
9 W. Melitz, E. Chagarov, T. Kent, R. Droopad, J. Ahn, R. Long, P. C. McIntyre, A. C. Kummel, and IEEE, Mechanism of Dangling Bond Elimination on As-rich InGaAs Surface. (IEEE, New York, 2012).
10 M. Scarrozza, G. Pourtois, M. Houssa, M. Caymax, A. Stesmans, M. Meuris, and M. M. Heyns, Appl. Phys. Lett. 95, 253504 (2009).
11 J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, Appl. Phys. Lett. 75, 1116 (1999).
12 Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, H. S. Tsai, J. Kwo, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, Electron. Lett. 35, 667 (1999).
13 J. Kwo, M. Hong, A. R. Kortan, D. W. Murphy, J. P. Mannaerts, A. M. Sergent, Y. C. Wang, and K. C. Hsieh, in Compound Semiconductor Surface Passivation and Novel Device Processing, edited by H. Hasegawa, M. Hong, Z. H. Lu et al. (Materials Research Society, Warrendale, 1999), Vol. 573, pp. 57.
14 Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, IEEE Electron Device Lett. 20, 457 (1999).
15 M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science 283, 1897 (1999).
16 M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, M. C. Wu, T. S. Lay, and A. M. Sergent, in Iii-V and Iv-Iv Materials and Processing Challenges for Highly Integrated Microelectronics and Optoelectronics, edited by S. A. Ringel, E. A. Fitzgerald, I. Adesida et al. (Materials Research Society, Warrendale, 1999), Vol. 535, pp. 151.
17 M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).
18 P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H. J. L. Gossmann, M. Frei, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, J. Electron. Mater. 33, 912 (2004).
19 P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H. J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 84, 434 (2004).
20 M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005).
21 C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 242911 (2006).
22 T. Yang, Y. Xuan, D. Zemlyanov, T. Shen, Y. Q. Wu, J. M. Woodall, P. D. Ye, F. S. Aguirre-Tostado, M. Milojevic, S. McDonnell, and R. M. Wallace, Appl. Phys. Lett. 91, 142122 (2007).
23 T. D. Lin, Y. H. Chang, C. A. Lin, M. L. Huang, W. C. Lee, J. Kwo, and M. Hong, Appl. Phys. Lett. 100, 172110 (2012).
24 Y. H. Chang, C. A. Lin, Y. T. Liu, T. H. Chiang, H. Y. Lin, M. L. Huang, T. D. Lin, T. W. Pi, J. Kwo, and M. Hong, Appl. Phys. Lett. 101, 172104 (2012).
25 Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, P. D. Ye, and Ieee, High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al(2)O(3), HfO(2), and HfAlO as gate dielectrics. (Ieee, New York, 2007), pp.637.
26 H. C. Chin, M. Zhu, G. S. Samudra, and Y. C. Yeo, J. Electrochem. Soc. 155, H464 (2008).
27 J. Q. Lin, S. J. Lee, H. J. Oh, G. Q. Lo, D. L. Kwong, and D. Z. Chi, IEEE Electron Device Lett. 29, 977 (2008).
28 S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, and W. Tsai, Appl. Phys. Lett. 92, 222904 (2008).
29 K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, IEEE Trans. Electron Devices 55, 547 (2008).
30 C. A. Lin, H. C. Lin, T. H. Chiang, R. L. Chu, L. K. Chu, T. D. Lin, Y. C. Chang, W. E. Wang, J. R. Kwo, and M. W. Hong, Appl. Phys. Express 4, 111101 (2011).
31 D. Lin, G. Brammertz, S. Sioncke, C. Fleischmann, A. Delabie, K. Martens, H. Bender, T. Conard, W. H. Tseng, J. C. Lin, W. E. Wang, K. Temst, A. Vantomme, J. Mitard, M. Caymax, M. Meuris, M. Heyns, T. Hoffmann, and Ieee, Enabling the high-performance InGaAs/Ge CMOS: a common gate stack solution. (Ieee, New York, 2009), pp.300.
32 R. Pillarisetty, B. Chu-Kung, S. Corcoran, G. Dewey, J. Kavalieros, H. Kennel, R. Kotlyar, V. Le, D. Lionberger, M. Metz, N. Mukherjee, J. Nah, W. Rachmady, M. Radosavljevic, U. Shah, S. Taft, H. Then, N. Zelick, R. Chau, and Ieee, High Mobility Strained Germanium Quantum Well Field Effect Transistor as the P-Channel Device Option for Low Power (Vcc=0.5 V) III-V CMOS Architecture. (Ieee, New York, 2010).
33 http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap12/chap12.htm.
34 M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, R. Chau, and Ieee, High-Performance 40nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V(CC)=0.5V) Logic Applications. (Ieee, New York, 2008), pp.727.
35 Y. J. Wei, A. Gin, M. Razeghi, and G. J. Brown, Appl. Phys. Lett. 81, 3675 (2002).
36 A. Nainani, T. Irisawa, Z. Yuan, Y. Sun, T. Krishnamohan, M. Reason, B. R. Bennett, J. B. Boos, M. G. Ancona, Y. Nishi, and K. C. Saraswat, IEDM Tech. Proceeding, 138 (2010).
37 A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, Appl. Phys. Lett. 97, 143502 (2010).
38 C. L. Lin, Y. K. Su, T. S. Se, and W. L. Li, Jpn. J. Appl. Phys. Lett. 37, L1543 (1998).
39 A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, Transactions on electron devices 58, 3407 (2011).
40 K. M. Schirm, P. Soukiassian, P. S. Mangat, Z. Hurych, L. Soonckindt, and J. J. Bonnet, J. Vac. Sci. Technol. B 10, 1867 (1992).
41 A. Nainani, Y. Sun, T. Irisawa, Z. Yuan, M. Kobayashi, P. Pianetta, B. R. Bennett, J. B. Boos, and K. C. Saraswat, J. Appl. Phys. 109, 114908 (2011).
42 P. S. Dutta, H. Bhat, and V. Kumar, Journal Applied Physics 81, 5821 (1997).
43 M. V. Lebedev, E. V. Kunitsyna, W. Calvet, T. Mayer, and W. Jaegermann, The Journal of Physical Chemistry C 117, 15996 (2013).
44 M. Xu, R. Wang, and P. D. Ye, Electron Device Letters 32, 883 (2011).
45 C. Merckling, X. Sun, A. Alian, G. Brammertz, V. V. Afanas’ev, T. Y. Hoffmann, M. Heyns, M. Caymax, and J. Dekoster, J. Appl. Phys. 109, 073719 (2011).
46 A. Greene, S. Madisetti, P. Nagaiah, M. Yakimov, V. Tokranov, R. Moore, and S. Oktyabrsky, Solid-State Electronics 78, 56 (2012).
47 L. F. Zhao, Z. Tan, J. Wang, and J. Xu, Appl. Surf. Sci. 289, 601 (2014).
48 E. R. Cleveland, L. B. Ruppalt, B. R. Bennett, and S. M. Prokes, Appl. Surf. Sci. 277, 167 (2013).
49 Z. Y. Liu, B. Hawkins, and T. F. Kuech, J. Vac. Sci. Technol. B 21, 71 (2003).
50 L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, J. Cryst. Growth 311, 2195 (2009).
51 I. Z. Mitrovic, M. Althobaiti, A. D. Weerakkody, V. R. Dhanak, W. M. Linhart, T. D. Veal, N. Sedghi, S. Hall, P. R. Chalker, D. Tsoutsou, and A. Dimoulas, J. Appl. Phys. 115, 16 (2014).
52 P. Chang, H. C. Chiu, T. D. Lin, M. L. Huang, W. H. Chang, S. Y. Wu, K. H. Wu, M. W. Hong, and J. Kwo, Appl. Phys. Express 4, 114202 (2011).
53 C. A. Lin, H. C. Chiu, T. H. Chiang, T. D. Lin, Y. H. Chang, W. H. Chang, Y. C. Chang, W. E. Wang, J. Dekoster, T. Y. Hoffmann, M. Hong, and J. Kow, Appl. Phys. Lett. 98, 062108 (2011).
54 W. H. Chang, C. H. Lee, Y. C. Chang, P. Chang, M. L. Huang, Y. J. Lee, C. H. Hsu, J. M. Hong, C. C. Tsai, J. R. Kwo, and M. W. Hong, Adv. Mater. 21, 4970 (2009).
55 T. Suntola and J. Antson, Patent No. US 4058430 (1977).
56 T. Suntola and M. Simpson, Atomic Layer Epitaxy. (Blackie and Son, London, 1990).
57 R. L. Puurunen, J. Appl. Phys. 98, 016102 (2005).
58 T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, Appl. Phys. Lett. 82, 2883 (2003).
59 R. Suri, B. Lee, D. J. Lichtenwalner, N. Biswas, and V. Misra, Appl. Phys. Lett. 93, 193504 (2008).
60 P. Majumder, G. Jursich, A. Kueltzo, and C. Takoudis, J. Electrochem. Soc. 155, G152 (2008).
61 T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, Appl. Phys. Lett. 93, 033516 (2008).
62 J. Kaindl, S. Sotier, and G. Franz, J. Electrochem. Soc. 142, 2418 (1995).
63 S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).
64 Siegfried Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. (Springer Berlin Heidelberg, 2013).
65 Stefan Hüfner, Photoelectron Spectroscopy: Principles and Applications. ( Springer-Verlag, Berlin Heidelberg, 1995).
66 M. Hong, J. Kwo, T. D. Lin, and M. L. Huang, MRS Bull. 34, 514 (2009).
67 D. K. Schroder, Semiconductor Materials and Device Characterization, 3ed. (Wiley, 2006).
68 E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967).
69 P. V. Gray and D. M. Brown, Appl. Phys. Lett. 8, 31 (1966).
70 D. V. Lang, J. Appl. Phys. 45, 3023 (1974).
71 E. H. Nicollian and J. R. Brews, MOS Physics and Technology. (Wiley, 2003).
72 G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 91, 133510 (2007).
73 W. Mizubayashu N. Toaka, Y. Morita, S. Migita, H. Ota, and S. Takagi, Jap. J. of Appl. Phys. 49, 04DA09 (2010).
74 Z. Y. Liu, T. F. Kuech, and D. A. Saulys, Appl. Phys. Lett. 83, 2587 (2003).
75 D. E. Eastman, T. C. Chiang, P. Heimann, and F. J. Himpsel, Phys. Rev. Lett. 45, 656 (1980).
76 E. J. Kim, L. Q. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. 96, 012906 (2010).
77 W. Walukiewicz, Phys. Rev. B 37, 4760 (1988).
78 C. B. Zota, S. H. Kim, Y. Asakura, M. Takenaka, and S. Takagi, presented at the Device Research Conference, University Park, TX, 2012 (unpublished).
79 S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Appl. Phys. Lett. 73, 809 (1998).
80 L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, Appl. Phys. Lett. 77, 3788 (2000).
81 H. C. Lin, G. Brammertz, K. Martens, G. de Valicourt, L. Negre, W. E. Wang, W. Tsai, M. Meuris, and M. Heyns, Appl. Phys. Lett. 94, 153508 (2009).
82 R. L. Chu, T. D. Lin, L. K. Chu, M. L. Huang, C. C. Chang, M. Hong, C. A. Lin, and J. Kwo, J. Vac. Sci. Technol. B 28, C3A1 (2010).
83 X. Sun, C. Merckling, G. Brammertz, D. Lin, J. Dekoster, S. Cui, and T. P. Ma, J. Appl. Phys. 111, 054102 (2012).
84 Z. Yuan, A. Nainani, B. R. Bennett, J. B. Boos, M. G. Ancona, and K. C. Saraswat, Appl. Phys. Lett. 100, 143503 (2012).
85 M. Yokoyama, Y. Asakura, H. Yokoyama, M. Takenaka, S. Takagi, and Ieee, in 2013 International Conference on Indium Phosphide and Related Materials (Ieee, New York, 2013).
86 D. M. Zhernokletov, H. Dong, B. Brennan, M. Yakimov, V. Tokranov, S. Oktyabrsky, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 102, 131602 (2013).
87 P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).
88 T. D. Lin, H. C. Chiu, P. Chang, Y. H. Chang, Y. D. Wu, M. Hong, and J. Kwo, Solid-State Electronics 54, 919 (2010).
89 Y. H. Chang, M. L. Huang, P. Chang, J. Y. Shen, B. R. Chen, C. L. Hsu, T. W. Pi, M. Hong, and J. Kwo, Microelectron. Eng. 88, 1101 (2011).
90 Y. C. Chang, C. Merckling, J. Penaud, C. Y. Lu, W. E. Wang, J. Dekoster, M. Meuris, M. Caymax, M. Heyns, J. Kwo, and M. Hong, Appl. Phys. Lett. 97, 112901 (2010).
91 Y. Yuan, L. Q. Wang, B. Yu, B. H. Shin, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, IEEE Electron Device Lett. 32, 485 (2011).
92 D. Shamiryan, M. Baklanov, M. Claes, W. Boullart, and V. Paraschiv, Chem. Eng. Commun. 196, 1475 (2009).
93 M. Yokoyama, K. Nishi, S. Kim, H. Yokoyama, M. Takenaka, and S. Takagi, Appl. Phys. Lett. 104, 093509 (2014).
94 L. S. Wu, B. Sun, H. D. Chang, W. Zhao, B. Q. Xue, X. Zhang, and H. G. Liu, Chin. Phys. Letters 29, 127303 (2012).
95 D. K. Schroder, Semiconductor Material and Device Characterization. (Wiley, New York, 2005).
96 Z. Yuan, A. Kumar, C. Y. Chen, A. Nainani, B. R. Bennett, J. B. Boos, and K. C. Saraswat, IEEE Electron Device Lett. 34, 1367 (2013).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *