帳號:guest(3.131.110.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):韓聞
作者(外文):Han Wen
論文名稱(中文):以細胞穿透胜肽發展新穎抗癌生醫材料
論文名稱(外文):Development of a Novel Anti-tumor Biomaterial by Modification with Cell Penetrating Peptide
指導教授(中文):張大慈
指導教授(外文):Chang, Dah Tsyr
口試委員(中文):周裕珽
曾雲龍
徐祖安
王慧菁
口試委員(外文):Chou, Yu Ting
Tseng, Yun Long
Hsu, Tsu An
Wang, Hui Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080605
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:121
中文關鍵詞:微脂體藥物細胞穿透胜肽醣胺多醣生醫材料腫瘤標靶
外文關鍵詞:liposomal drugcell penetrating peptideglycosaminoglycanbiomaterialtumor targeting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:186
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
上皮癌細胞的治療方法受限於內吞作用及被動運輸,傳統化學治療藥物非專一性的藥物生物分布會導致嚴重的副作用,因此開發專一性辨認腫瘤細胞表面配體(ligand)為目前改良癌症治療的轉譯研究趨勢。本實驗室於人類嗜酸性白血球陽離子蛋白(human eosinophil cationic protein、hECP)中核心硫酸乙醯肝素(heparan sulfate、HS)結合區域發展具有醣胺多醣(glycosaminoglycan、GAG)結合、表皮細胞結合、細胞穿透、及載物傳遞能力的新穎細胞穿透胜肽(cell penetrating peptide、CPPecp)。細胞表面的GAG在受體(receptor)與生長因子之間扮演複合受體(coreceptor)的角色,調控細胞的生長、黏附、移行、訊號傳遞、並調控癌症進程。本研究成功將含有磷脂質的交聯劑和CPPecp結合成為生醫材料,進一步發展以CPPecp為基礎修飾之新穎微脂體藥物,並證實其於人類肺癌上皮細胞之攝入效率高於未修飾的微脂體藥物,故可提升抗癌活性。本研究利用3D細胞培養技術模擬立體腫瘤微組織,發現CPPecp修飾微脂體藥物穿透3D癌細胞球體之能力高於未修飾微脂體藥物,顯示其具備較強的抑制固體癌組織能力。進一步利用皮下異種移植之腫瘤小鼠模式進行藥物療效研究,初步結果顯示相較於未修飾微脂體藥物治療之腫瘤小鼠,CPPecp修飾微脂體藥物不會造成受試動物體重減輕、顯著改善藥物之副作用、且此新穎配方明顯抑制腫瘤的生長。基於現今尚未被滿足的醫療需求甚高,本研究發展之合成策略可提供替代的解決方案以減低微脂體藥物之劑量及癌症化療藥物的副作用,具備轉譯醫學發展潛力。
Therapeutic treatment on epithelial cancer is still limited by low internalization activity and passive transportation. Traditional chemotherapeutic agents usually accompany with severe side effects due to nonspecific drug biodistribution. The development of new methods for improving translational research for cancer therapy is contingent on specific recognition of ligands on the surface of cancer cells. Here, a novel cell penetrating peptide derived from core heparan sulfate binding motif of human eosinophil cationic protein (hECP), CPPecp, possesses cell surface glycosaminoglycan (GAG) binding, epithelial cell binding, cell penetrating, and cargo delivery activities. Cell surface GAGs are important co-receptors between cell surface receptor and growth factors, and regulate cell proliferation, adhesion, migration and signaling, especially during cancer progression. In this study we have successfully conjugated CPPecp to a phospholipid containing linker and developed a novel CPPecp-based modification methodology of liposomal drug. As expected, in vitro cellular uptake efficiency of CPPecp-modified liposomal drug toward lung epithelial cancer cells is evidently higher than that of unmodified liposomal drug, leading to enhancement of anti-tumor activity. In addition, 3D culture of epithelial cancer spheroid mimicking solid tumor microtissues shows higher permeability of CPPecp-modified liposomal drug than that of unmodified liposomal drug. Moreover, in vivo epithelial tumor-bearing mouse model with treatment of CPPecp-modified liposomal drug demonstrates no dramatic weight decrease as original drug does, suggesting low side effects during medication. Our new formulation inhibits in vivo tumor progression to a much significant extent than unmodified liposomal drug. Our engineering strategy provides an alternative solution for unmet medical need to reduce the dosage of liposomal drugs and alleviate chemotherapeutic side effects in cancer therapy, which in turn contributes to further development of translational medicine.
中文摘要 I
Abstract II
Acknowledgement III
List of Contents IV
List of Tables VII
List of Figures VIII
List of Appendices X
Abbreviation XI
Chapter 1 Introduction 1
1.1 Roles of surface glycosaminoglycans in cancer cells 1
1.2 A novel cell penetrating peptide derived from eosinophil cationic protein (ECP) 5
1.3 Drug delivery system (DDS), liposome and liposomal drug 9
1.4 Peptide-modified liposomal drugs 13
1.5 Specific Aims 15
Chapter 2 Materials and Methods 16
2.1 Bacterial strains, vectors, and culture condition 16
2.2 Competent cell preparation and transformation 16
2.3 Small scale expression of recombinant protein 6His-ECP 17
2.4 Large scale expression of recombinant protein 6His-ECP 17
2.5 Isolation and solubilization of 6His-ECP inclusion bodies 18
2.6 Purification of recombinant 6His-ECP 18
2.7 In vitro folding of 6His-ECP 19
2.8 Buffer quantification 19
2.9 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 20
2.10 RNase activity assay against tRNA substrate 20
2.11 Cells and cell culture 21
2.12 Crosslinking liposomal drug with CPPecp via EDC/NHS 22
2.13 In vitro cell viability assay 22
2.14 Release of doxorubicin from Lipo-Dox® 23
2.15 Removal of fluorenylmethyloxycarbonyl (Fmoc) from Fmoc-CPPecp-Resin 24
2.16 Conjugation of DSPE-PEG2k-NHS to N-terminal of CPPecp 24
2.17 Synthesis of DSPE-PEG2k-CysCPPecp and incorporation with Lipo-Dox® 25
2.18 Particle size and zeta potential of various formulations of Lipo-Dox® 26
2.19 Fluorescence-activated cell sorting (FACS) analysis of cellular uptake experiment 27
2.20 A549 tumor spheroid formation analysis 27
2.21 Uptake of Lipo-Dox®-DSPE-PEG2k-CysCPPecp into A549 cells 28
2.22 Lipo-Dox® treatment on A549 tumor mouse model 28
2.23 Statistic analysis 29
Chapter 3 Results 30
3.1 Cytotoxicity of Lipo-Dox® toward A549 cells in the presence of CPPecp: charge attraction and random conjugation 30
3.2 Leakage of doxorubicin from Lipo-Dox® in the presence of EDC/NHS crosslinker 31
3.3 Synthesis and molecular weight determination of DSPE-PEG2k-N-terCPPecp 32
3.4 Synthesis of DSPE-PEG2k-CysCPPecp 33
3.5 Characterization of Lipo-Dox®-DSPE-PEG2k-CysCPPecp 34
3.6 Leakage of doxorubicin from Lipo-Dox® in the presence of DSPE-PEG2k-CysCPPecp 35
3.7 Cytotoxicity of different formulations of Lipo-Dox® toward A549 cells 36
3.8 Cellular uptake of Lipo-Dox®-DSPE-PEG2k-CysCPPecp 37
3.9 Accumulation of Lipo-Dox®-DSPE-PEG2k-CysCPPecp in A549 spheroids 38
3.10 In vivo effects of Lipo-Dox® and Lipo-Dox®-DSPE-PEG2k-CysCPPecp treatment 40
Chapter 4 Discussion 43
References 53
Figures 68
Tables 89
Appendices 93
1. M. Hook, L. Kjellen, and S. Johansson, Cell-surface glycosaminoglycans. Annu Rev Biochem, 1984. 53: p. 847-69.
2. D.H. Dube, and C.R. Bertozzi, Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov, 2005. 4: p. 477-88.
3. M.N. Christiansen, J. Chik, L. Lee, M. Anugraham, J.L. Abrahams, and N.H. Packer, Cell surface protein glycosylation in cancer. Proteomics, 2014. 14: p. 525-46.
4. C.A. Cooney, F. Jousheghany, A. Yao-Borengasser, B. Phanavanh, T. Gomes, A.M. Kieber-Emmons, E.R. Siegel, L.J. Suva, S. Ferrone, T. Kieber-Emmons, and B. Monzavi-Karbassi, Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast Cancer Res, 2011. 13: p. R58.
5. J. Kleeff, T. Ishiwata, A. Kumbasar, H. Friess, M.W. Buchler, A.D. Lander, and M. Korc, The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest, 1998. 102: p. 1662-73.
6. K. Nackaerts, E. Verbeken, G. Deneffe, B. Vanderschueren, M. Demedts, and G. David, Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer, 1997. 74: p. 335-45.
7. S. Sarrazin, W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3.
8. H.C. Christianson, and M. Belting, Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol, 2014. 35: p. 51-5.
9. M. Belting, Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci, 2003. 28: p. 145-51.
10. F.H. Blackhall, C.L. Merry, E.J. Davies, and G.C. Jayson, Heparan sulfate proteoglycans and cancer. Br J Cancer, 2001. 85: p. 1094-8.
11. J. Tuomela, M. Valta, J. Seppanen, K. Tarkkonen, H.K. Vaananen, and P. Harkonen, Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer, 2009. 9: p. 362.
12. R.I. Nicholson, J.M. Gee, and M.E. Harper, EGFR and cancer prognosis. Eur J Cancer, 2001. 37 Suppl 4: p. S9-15.
13. D. Barbouri, N. Afratis, C. Gialeli, D.H. Vynios, A.D. Theocharis, and N.K. Karamanos, Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol, 2014. 4: p. 4.
14. W.J. Fairbrother, M.A. Champe, H.W. Christinger, B.A. Keyt, and M.A. Starovasnik, Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure, 1998. 6: p. 637-48.
15. T.K. Ito, G. Ishii, H. Chiba, and A. Ochiai, The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene, 2007. 26: p. 7194-203.
16. S. Cheifetz, and J. Massague, Transforming growth factor-beta (TGF-beta) receptor proteoglycan. Cell surface expression and ligand binding in the absence of glycosaminoglycan chains. J Biol Chem, 1989. 264: p. 12025-8.
17. J. Massague, TGFbeta in Cancer. Cell, 2008. 134: p. 215-30.
18. M. Lyon, G. Rushton, and J.T. Gallagher, The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific. J Biol Chem, 1997. 272: p. 18000-6.
19. K. Forsten-Williams, C.L. Chu, M. Fannon, J.A. Buczek-Thomas, and M.A. Nugent, Control of growth factor networks by heparan sulfate proteoglycans. Ann Biomed Eng, 2008. 36: p. 2134-48.
20. R.N. Prince, E.R. Schreiter, P. Zou, H.S. Wiley, A.Y. Ting, R.T. Lee, and D.A. Lauffenburger, The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release. J Cell Sci, 2010. 123: p. 2308-18.
21. C.L. Cole, G. Rushton, G.C. Jayson, and E. Avizienyte, Ovarian cancer cell heparan sulfate 6-O-sulfotransferases regulate an angiogenic program induced by heparin-binding epidermal growth factor (EGF)-like growth factor/EGF receptor signaling. J Biol Chem, 2014. 289: p. 10488-501.
22. M. Capurro, T. Martin, W. Shi, and J. Filmus, Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J Cell Sci, 2014. 127: p. 1565-75.
23. X. Zhong, T. Desilva, L. Lin, P. Bodine, R.A. Bhat, E. Presman, J. Pocas, M. Stahl, and R. Kriz, Regulation of secreted Frizzled-related protein-1 by heparin. J Biol Chem, 2007. 282: p. 20523-33.
24. J.N. Anastas, and R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer, 2013. 13: p. 11-26.
25. A. Mueller, A. Meiser, E.M. McDonagh, J.M. Fox, S.J. Petit, G. Xanthou, T.J. Williams, and J.E. Pease, CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. J Leukoc Biol, 2008. 83: p. 875-82.
26. E. Deutsch, S.A. Johnson, and W.H. Seegers, Differentiation of certain platelet factors related to blood coagulation. Circ Res, 1955. 3: p. 110-5.
27. J.P. Lai, J.R. Chien, D.R. Moser, J.K. Staub, I. Aderca, D.P. Montoya, T.A. Matthews, D.M. Nagorney, J.M. Cunningham, D.I. Smith, E.L. Greene, V. Shridhar, and L.R. Roberts, hSulf1 Sulfatase promotes apoptosis of hepatocellular cancer cells by decreasing heparin-binding growth factor signaling. Gastroenterology, 2004. 126: p. 231-48.
28. J.C. Casar, C. Cabello-Verrugio, H. Olguin, R. Aldunate, N.C. Inestrosa, and E. Brandan, Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci, 2004. 117: p. 73-84.
29. M. Lyon, J.A. Deakin, K. Mizuno, T. Nakamura, and J.T. Gallagher, Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem, 1994. 269: p. 11216-23.
30. J. Gutierrez, D. Cabrera, and E. Brandan, Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells. Skelet Muscle, 2014. 4: p. 5.
31. S. Kon, M. Ikesue, C. Kimura, M. Aoki, Y. Nakayama, Y. Saito, D. Kurotaki, H. Diao, Y. Matsui, T. Segawa, M. Maeda, T. Kojima, and T. Uede, Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J Exp Med, 2008. 205: p. 25-33.
32. Z. Mi, T. Oliver, H. Guo, C. Gao, and P.C. Kuo, Thrombin-cleaved COOH(-) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Res, 2007. 67: p. 4088-97.
33. K. Uchimura, M. Morimoto-Tomita, A. Bistrup, J. Li, M. Lyon, J. Gallagher, Z. Werb, and S.D. Rosen, HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem, 2006. 7: p. 2.
34. A. Sutton, V. Friand, S. Brule-Donneger, T. Chaigneau, M. Ziol, O. Sainte-Catherine, A. Poire, L. Saffar, M. Kraemer, J. Vassy, P. Nahon, J.L. Salzmann, L. Gattegno, and N. Charnaux, Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res, 2007. 5: p. 21-33.
35. T. Netelenbos, S. Zuijderduijn, J. Van Den Born, F.L. Kessler, S. Zweegman, P.C. Huijgens, and A.M. Drager, Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells. J Leukoc Biol, 2002. 72: p. 353-62.
36. A.C. Rapraeger, Synstatin: a selective inhibitor of the syndecan-1-coupled IGF1R-alphavbeta3 integrin complex in tumorigenesis and angiogenesis. FEBS J, 2013. 280: p. 2207-15.
37. N. Brunner, C. Moser, R. Clarke, and K. Cullen, IGF-I and IGF-II expression in human breast cancer xenografts: relationship to hormone independence. Breast Cancer Res Treat, 1992. 22: p. 39-45.
38. A. Sebestyen, M. Gallai, T. Knittel, T. Ambrust, G. Ramadori, and I. Kovalszky, Cytokine regulation of syndecan expression in cells of liver origin. Cytokine, 2000. 12: p. 1557-60.
39. S. Bussini, L. Meda, E. Scarpini, E. Clementi, G. Conti, M. Tiriticco, N. Bresolin, and P. Baron, Heparan sulfate proteoglycan induces the production of NO and TNF-alpha by murine microglia. Immun Ageing, 2005. 2: p. 11.
40. S.E. Tully, M. Rawat, and L.C. Hsieh-Wilson, Discovery of a TNF-alpha antagonist using chondroitin sulfate microarrays. J Am Chem Soc, 2006. 128: p. 7740-1.
41. A. Ori, M.C. Wilkinson, and D.G. Fernig, The heparanome and regulation of cell function: structures, functions and challenges. Front Biosci, 2008. 13: p. 4309-38.
42. H.F. Rosenberg, S.J. Ackerman, and D.G. Tenen, Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med, 1989. 170: p. 163-76.
43. D. Sanchez, M. Moussaoui, E. Carreras, M. Torrent, V. Nogues, and E. Boix, Mapping the eosinophil cationic protein antimicrobial activity by chemical and enzymatic cleavage. Biochimie, 2011. 93: p. 331-8.
44. M.C. Pereira, D.T. Oliveira, and L.P. Kowalski, The role of eosinophils and eosinophil cationic protein in oral cancer: a review. Arch Oral Biol, 2011. 56: p. 353-8.
45. S. Sorrentino, and D.G. Glitz, Ribonuclease activity and substrate preference of human eosinophil cationic protein (ECP). FEBS Lett, 1991. 288: p. 23-6.
46. S. Motojima, E. Frigas, D.A. Loegering, and G.J. Gleich, Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis, 1989. 139: p. 801-5.
47. E. Carreras, E. Boix, S. Navarro, H.F. Rosenberg, C.M. Cuchillo, and M.V. Nogues, Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem, 2005. 272: p. 1-7.
48. S. Ali, J. Kaur, and K.D. Patel, Intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and regulated on activation normal T cell expressed and secreted are expressed by human breast carcinoma cells and support eosinophil adhesion and activation. Am J Pathol, 2000. 157: p. 313-21.
49. P. Venge, Monitoring the allergic inflammation. Allergy, 2004. 59: p. 26-32.
50. K. Prydz, and K.T. Dalen, Synthesis and sorting of proteoglycans. J Cell Sci, 2000. 113 Pt 2: p. 193-205.
51. T.C. Fan, H.T. Chang, I.W. Chen, H.Y. Wang, and M.D. Chang, A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8: p. 1778-95.
52. A.D. Cardin, and H.J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis, 1989. 9: p. 21-32.
53. S.L. Fang, T.C. Fan, H.W. Fu, C.J. Chen, C.S. Hwang, T.J. Hung, L.Y. Lin, and M.D. Chang, A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One, 2013. 8: p. e57318.
54. C.-J. Chen, K.-C. Tsai, P.-H. Kuo, P.-L. Chang, W.-C. Wang, Y.-J. Chuang, and M.D.-T. Chang, A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BioMed Research International, 2015. 2015: p. 15.
55. L. Schaefer, A. Babelova, E. Kiss, H.J. Hausser, M. Baliova, M. Krzyzankova, G. Marsche, M.F. Young, D. Mihalik, M. Gotte, E. Malle, R.M. Schaefer, and H.J. Grone, The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest, 2005. 115: p. 2223-33.
56. H. Frey, N. Schroeder, T. Manon-Jensen, R.V. Iozzo, and L. Schaefer, Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J, 2013. 280: p. 2165-79.
57. J.R. Dunlevy, and J.A. Rada, Interaction of lumican with aggrecan in the aging human sclera. Invest Ophthalmol Vis Sci, 2004. 45: p. 3849-56.
58. C. del Fresno, K. Otero, L. Gomez-Garcia, M.C. Gonzalez-Leon, L. Soler-Ranger, P. Fuentes-Prior, P. Escoll, R. Baos, L. Caveda, F. Garcia, F. Arnalich, and E. Lopez-Collazo, Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J Immunol, 2005. 174: p. 3032-40.
59. P. Bratt, M.M. Anderson, B. Mansson-Rahemtulla, J.W. Stevens, C. Zhou, and F. Rahemtulla, Isolation and characterization of bovine gingival proteoglycans versican and decorin. Int J Biochem, 1992. 24: p. 1573-83.
60. H.M. Lacy, and R.D. Sanderson, Sperm protein 17 is expressed on normal and malignant lymphocytes and promotes heparan sulfate-mediated cell-cell adhesion. Blood, 2001. 98: p. 2160-5.
61. M. Gotte, Syndecans in inflammation. FASEB J, 2003. 17: p. 575-91.
62. M. Uchiba, K. Okajima, K. Murakami, H. Okabe, and K. Takatsuki, Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III. Am J Physiol, 1996. 270: p. L921-30.
63. R.V. Tantravahi, R.L. Stevens, K.F. Austen, and J.H. Weis, A single gene in mast cells encodes the core peptides of heparin and chondroitin sulfate proteoglycans. Proc Natl Acad Sci U S A, 1986. 83: p. 9207-10.
64. R.L. Stevens, C.C. Fox, L.M. Lichtenstein, and K.F. Austen, Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells. Proc Natl Acad Sci U S A, 1988. 85: p. 2284-7.
65. H. Kawashima, N. Watanabe, M. Hirose, X. Sun, K. Atarashi, T. Kimura, K. Shikata, M. Matsuda, D. Ogawa, R. Heljasvaara, M. Rehn, T. Pihlajaniemi, and M. Miyasaka, Collagen XVIII, a basement membrane heparan sulfate proteoglycan, interacts with L-selectin and monocyte chemoattractant protein-1. J Biol Chem, 2003. 278: p. 13069-76.
66. A.L. Sertie, V. Sossi, A.A. Camargo, M. Zatz, C. Brahe, and M.R. Passos-Bueno, Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Hum Mol Genet, 2000. 9: p. 2051-8.
67. G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, and S.K. Bannerjee, Drug delivery systems: An updated review. Int J Pharm Investig, 2012. 2: p. 2-11.
68. V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 2005. 4: p. 145-60.
69. G. Thurston, J.W. McLean, M. Rizen, P. Baluk, A. Haskell, T.J. Murphy, D. Hanahan, and D.M. McDonald, Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest, 1998. 101: p. 1401-13.
70. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, and R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2: p. 751-60.
71. J. Fang, H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev, 2011. 63: p. 136-51.
72. D. Thacharodi, and K.P. Rao, Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials, 1995. 16: p. 145-8.
73. V.P. Torchilin, Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol, 2010: p. 3-53.
74. M. Wang, and M. Thanou, Targeting nanoparticles to cancer. Pharmacol Res, 2010. 62: p. 90-9.
75. V.P. Torchilin, Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J, 2007. 9: p. E128-47.
76. D.W. Northfelt, F.J. Martin, P. Working, P.A. Volberding, J. Russell, M. Newman, M.A. Amantea, and L.D. Kaplan, Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. J Clin Pharmacol, 1996. 36: p. 55-63.
77. R.N. Davidson, L. Di Martino, L. Gradoni, R. Giacchino, R. Russo, G.B. Gaeta, R. Pempinello, S. Scott, F. Raimondi, A. Cascio, and et al., Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Q J Med, 1994. 87: p. 75-81.
78. I.M. Hann, and H.G. Prentice, Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents, 2001. 17: p. 161-9.
79. T.J. Walsh, J.W. Hiemenz, N.L. Seibel, J.R. Perfect, G. Horwith, L. Lee, J.L. Silber, M.J. DiNubile, A. Reboli, E. Bow, J. Lister, and E.J. Anaissie, Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis, 1998. 26: p. 1383-96.
80. D. Gambling, T. Hughes, G. Martin, W. Horton, and G. Manvelian, A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg, 2005. 100: p. 1065-74.
81. N.D. James, R.J. Coker, D. Tomlinson, J.R. Harris, M. Gompels, A.J. Pinching, and J.S. Stewart, Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol), 1994. 6: p. 294-6.
82. Y. Barenholz, Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release, 2012. 160: p. 117-34.
83. G. Batist, G. Ramakrishnan, C.S. Rao, A. Chandrasekharan, J. Gutheil, T. Guthrie, P. Shah, A. Khojasteh, M.K. Nair, K. Hoelzer, K. Tkaczuk, Y.C. Park, and L.W. Lee, Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol, 2001. 19: p. 1444-54.
84. J. Blade, P. Sonneveld, J.F. San Miguel, H.J. Sutherland, R. Hajek, A. Nagler, A. Spencer, T. Robak, K.C. Lantz, S.H. Zhuang, J.L. Harousseau, R.Z. Orlowski, and D.-M.-S. Investigators, Efficacy and safety of pegylated liposomal Doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin Lymphoma Myeloma Leuk, 2011. 11: p. 44-9.
85. D.J. Porche, Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care, 1996. 7: p. 55-9.
86. F.M. Veronese, and A. Mero, The impact of PEGylation on biological therapies. BioDrugs, 2008. 22: p. 315-29.
87. R. Bowden, P. Chandrasekar, M.H. White, X. Li, L. Pietrelli, M. Gurwith, J.A. van Burik, M. Laverdiere, S. Safrin, and J.R. Wingard, A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis, 2002. 35: p. 359-66.
88. C.E. Petre, and D.P. Dittmer, Liposomal daunorubicin as treatment for Kaposi's sarcoma. Int J Nanomedicine, 2007. 2: p. 277-88.
89. M.J. Glantz, S. LaFollette, K.A. Jaeckle, W. Shapiro, L. Swinnen, J.R. Rozental, S. Phuphanich, L.R. Rogers, J.C. Gutheil, T. Batchelor, D. Lyter, M. Chamberlain, B.L. Maria, C. Schiffer, R. Bashir, D. Thomas, W. Cowens, and S.B. Howell, Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol, 1999. 17: p. 3110-6.
90. M.J. Glantz, K.A. Jaeckle, M.C. Chamberlain, S. Phuphanich, L. Recht, L.J. Swinnen, B. Maria, S. LaFollette, G.B. Schumann, B.F. Cole, and S.B. Howell, A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res, 1999. 5: p. 3394-402.
91. G. Verteporfin In Photodynamic Therapy Study, Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization--verteporfin in photodynamic therapy report 2. Am J Ophthalmol, 2001. 131: p. 541-60.
92. http://www.tlcbio.com/en/product_lipo_dox.html.
93. J.A. Simon, and E.S. Group, Estradiol in micellar nanoparticles: the efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause, 2006. 13: p. 222-31.
94. A.H. Sarris, F. Hagemeister, J. Romaguera, M.A. Rodriguez, P. McLaughlin, A.M. Tsimberidou, L.J. Medeiros, B. Samuels, O. Pate, M. Oholendt, H. Kantarjian, C. Burge, and F. Cabanillas, Liposomal vincristine in relapsed non-Hodgkin's lymphomas: early results of an ongoing phase II trial. Ann Oncol, 2000. 11: p. 69-72.
95. M.A. Rodriguez, R. Pytlik, T. Kozak, M. Chhanabhai, R. Gascoyne, B. Lu, S.R. Deitcher, J.N. Winter, and I. Marqibo, Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer, 2009. 115: p. 3475-82.
96. V.P. Torchilin, Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng, 2006. 8: p. 343-75.
97. S. Biswas, N.S. Dodwadkar, R.R. Sawant, A. Koshkaryev, and V.P. Torchilin, Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target, 2011. 19: p. 552-61.
98. S.R. Schwarze, and S.F. Dowdy, In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000. 21: p. 45-8.
99. B. Gupta, T.S. Levchenko, and V.P. Torchilin, Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev, 2005. 57: p. 637-51.
100. H. Nagahara, A.M. Vocero-Akbani, E.L. Snyder, A. Ho, D.G. Latham, N.A. Lissy, M. Becker-Hapak, S.A. Ezhevsky, and S.F. Dowdy, Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med, 1998. 4: p. 1449-52.
101. E. Vives, P. Brodin, and B. Lebleu, A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997. 272: p. 16010-7.
102. V.P. Torchilin, T.S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, and G.G. D'Souza, Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A, 2003. 100: p. 1972-7.
103. E. Koren, A. Apte, A. Jani, and V.P. Torchilin, Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release, 2012. 160: p. 264-73.
104. S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura, Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 2001. 276: p. 5836-40.
105. M. Mandel, and A. Higa, Calcium-dependent bacteriophage DNA infection. J Mol Biol, 1970. 53: p. 159-62.
106. K. Na, S.A. Lee, S.H. Jung, J. Hyun, and B.C. Shin, Elastin-like polypeptide modified liposomes for enhancing cellular uptake into tumor cells. Colloids Surf B Biointerfaces, 2012. 91: p. 130-6.
107. H.D. Han, B.C. Shin, and H.S. Choi, Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): drug release behavior and stability in the presence of serum. Eur J Pharm Biopharm, 2006. 62: p. 110-6.
108. A. Isidro-Llobet, M. Alvarez, and F. Albericio, Amino acid-protecting groups. Chem Rev, 2009. 109: p. 2455-504.
109. V. Rivest, A. Phivilay, C. Julien, S. Belanger, C. Tremblay, V. Emond, and F. Calon, Novel liposomal formulation for targeted gene delivery. Pharm Res, 2007. 24: p. 981-90.
110. T.M. Allen, P. Sapra, and E. Moase, Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett, 2002. 7: p. 889-94.
111. T.M. Yang, D. Barbone, D.A. Fennell, and V.C. Broaddus, Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am J Respir Cell Mol Biol, 2009. 41: p. 14-23.
112. C.W. Chen, D.W. Lu, M.K. Yeh, C.Y. Shiau, and C.H. Chiang, Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine, 2011. 6: p. 2567-80.
113. L.H. Jensen, A. Renodon-Corniere, I. Wessel, S.W. Langer, B. Sokilde, E.V. Carstensen, M. Sehested, and P.B. Jensen, Maleimide is a potent inhibitor of topoisomerase II in vitro and in vivo: a new mode of catalytic inhibition. Mol Pharmacol, 2002. 61: p. 1235-43.
114. S. Biswas, P.P. Deshpande, F. Perche, N.S. Dodwadkar, S.D. Sane, and V.P. Torchilin, Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett, 2013. 335: p. 191-200.
115. T.L. Andresen, S.S. Jensen, and K. Jorgensen, Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res, 2005. 44: p. 68-97.
116. S. K., M. M., and V. P., Oral lipid-based drug delivery systems-an overview. Acta Pharmacol Sin, 2013. 3: p. 361-372.
117. Y. Nishioka, and H. Yoshino, Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev, 2001. 47: p. 55-64.
118. C. Sakakura, T. Takahashi, K. Sawai, A. Hagiwara, M. Ito, S. Shobayashi, S. Sasaki, K. Ozaki, and M. Shirasu, Enhancement of therapeutic efficacy of aclarubicin against lymph node metastases using a new dosage form: aclarubicin adsorbed on activated carbon particles. Anticancer Drugs, 1992. 3: p. 233-6.
119. R. Gref, A. Domb, P. Quellec, T. Blunk, R.H. Muller, J.M. Verbavatz, and R. Langer, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev, 1995. 16: p. 215-233.
120. M. Çağdaş, A.D. Sezer, and S. Bucak, Liposomes as Potential Drug Carrier Systems for Drug Delivery. Application of Nanotechnology in Drug Delivery. 2014.
121. D.C. Drummond, O. Meyer, K. Hong, D.B. Kirpotin, and D. Papahadjopoulos, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev, 1999. 51: p. 691-743.
122. M.C. Woodle, and D.D. Lasic, Sterically stabilized liposomes. Biochim Biophys Acta, 1992. 1113: p. 171-99.
123. S. Barlas, FDA strategies to prevent and respond to drug shortages: finding a better way to predict and prevent company closures. P T, 2013. 38: p. 261-3.
124. Erratum: Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era [Corrigendum]. Onco Targets Ther, 2015. 8: p. 593.
125. http://www.tbca-npo.org.tw/upload/%7B7610154F-A712-4CDD-8E46-1A3F8FBCDD7C%7D_%E8%97%A5%E7%89%A9%E7%AF%87.pdf.
126. W.Y. Ayen, and N. Kumar, In vivo evaluation of doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes (PolyDoxSome) using DMBA-induced mammary carcinoma rat model and comparison with marketed LipoDox. Pharm Res, 2012. 29: p. 2522-33.
127. R.M. Schiffelers, G.A. Koning, T.L. ten Hagen, M.H. Fens, A.J. Schraa, A.P. Janssen, R.J. Kok, G. Molema, and G. Storm, Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release, 2003. 91: p. 115-22.
128. T.C. Fan, S.L. Fang, C.S. Hwang, C.Y. Hsu, X.A. Lu, S.C. Hung, S.C. Lin, and M.D. Chang, Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem, 2008. 283: p. 25468-74.
129. P.C. Lien, P.H. Kuo, C.J. Chen, H.H. Chang, S.L. Fang, W.S. Wu, Y.K. Lai, T.W. Pai, and M.D. Chang, In silico prediction and in vitro characterization of multifunctional human RNase3. Biomed Res Int, 2013. 2013: p. 170398.
130. K. Oberg, P. Hellman, D. Kwekkeboom, S. Jelic, and E.G.W. Group, Neuroendocrine bronchial and thymic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2010. 21 Suppl 5: p. v220-2.
131. R. Govindan, N. Page, D. Morgensztern, W. Read, R. Tierney, A. Vlahiotis, E.L. Spitznagel, and J. Piccirillo, Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol, 2006. 24: p. 4539-44.
132. K. Noda, Y. Nishiwaki, M. Kawahara, S. Negoro, T. Sugiura, A. Yokoyama, M. Fukuoka, K. Mori, K. Watanabe, T. Tamura, S. Yamamoto, N. Saijo, and G. Japan Clinical Oncology, Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med, 2002. 346: p. 85-91.
133. B.J. Lestini, S.M. Sagnella, Z. Xu, M.S. Shive, N.J. Richter, J. Jayaseharan, A.J. Case, K. Kottke-Marchant, J.M. Anderson, and R.E. Marchant, Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control Release, 2002. 78: p. 235-47.
134. T. Hernandez-Caselles, J. Villalain, and J.C. Gomez-Fernandez, Influence of liposome charge and composition on their interaction with human blood serum proteins. Mol Cell Biochem, 1993. 120: p. 119-26.
135. S. Gautam, and K.C. Loh, Immobilization of hydrophobic peptidic ligands to hydrophilic chromatographic matrix: a preconcentration approach. Anal Biochem, 2012. 423: p. 202-9.
136. R.M. Lu, Y.L. Chang, M.S. Chen, and H.C. Wu, Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 2011. 32: p. 3265-74.
137. S.S. Ghosh, P.M. Kao, A.W. McCue, and H.L. Chappelle, Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjug Chem, 1990. 1: p. 71-6.
138. B.J. Berne, and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics 2000, Mineola, NY.
139. C. Demetzos, Differential Scanning Calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res, 2008. 18: p. 159-73.
140. Y. Matsumura, and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986. 46: p. 6387-92.
141. H. Maeda, L.W. Seymour, and Y. Miyamoto, Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem, 1992. 3: p. 351-62.
142. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release, 2000. 65: p. 271-84.
143. F. Edenhofer, Protein transduction revisited: novel insights into the mechanism underlying intracellular delivery of proteins. Curr Pharm Des, 2008. 14: p. 3628-36.
144. S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12: p. 991-1003.
145. Z. Liu, and N. Zhang, pH-Sensitive polymeric micelles for programmable drug and gene delivery. Curr Pharm Des, 2012. 18: p. 3442-51.
146. M. Magzoub, A. Pramanik, and A. Graslund, Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry, 2005. 44: p. 14890-7.
147. R.B. Campbell, D. Fukumura, E.B. Brown, L.M. Mazzola, Y. Izumi, R.K. Jain, V.P. Torchilin, and L.L. Munn, Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res, 2002. 62: p. 6831-6.
148. T.S. Levchenko, R. Rammohan, A.N. Lukyanov, K.R. Whiteman, and V.P. Torchilin, Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm, 2002. 240: p. 95-102.
149. S. Krasnici, A. Werner, M.E. Eichhorn, M. Schmitt-Sody, S.A. Pahernik, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks, and M. Dellian, Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer, 2003. 105: p. 561-7.
150. B. Ashok, L. Arleth, R.P. Hjelm, I. Rubinstein, and H. Onyuksel, In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci, 2004. 93: p. 2476-87.
151. P.S. Uster, T.M. Allen, B.E. Daniel, C.J. Mendez, M.S. Newman, and G.Z. Zhu, Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett, 1996. 386: p. 243-6.
152. L. Vukovic, F.A. Khatib, S.P. Drake, A. Madriaga, K.S. Brandenburg, P. Kral, and H. Onyuksel, Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc, 2011. 133: p. 13481-8.
153. C.J. Chen, K.C. Tsai, P.H. Kuo, P.L. Chang, W.C. Wang, Y.J. Chuang, and M.D. Chang, A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. Biomed Res Int, 2015. 2015: p. 237969.
154. G. Pasut, and F.M. Veronese, State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release, 2012. 161: p. 461-72.
155. D. Grossman, P.J. Kim, J.S. Schechner, and D.C. Altieri, Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci U S A, 2001. 98: p. 635-40.
156. S.K. Vashist, E.M. Schneider, and J.H. Luong, Surface plasmon resonance-based immunoassay for human fetuin A. Analyst, 2014. 139: p. 2237-42.
157. Z. Wang, Y. Yu, W. Dai, J. Lu, J. Cui, H. Wu, L. Yuan, H. Zhang, X. Wang, J. Wang, X. Zhang, and Q. Zhang, The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials, 2012. 33: p. 8451-60.
158. M. Shahin, R. Soudy, H.M. Aliabadi, N. Kneteman, K. Kaur, and A. Lavasanifar, Engineered breast tumor targeting peptide ligand modified liposomal doxorubicin and the effect of peptide density on anticancer activity. Biomaterials, 2013. 34: p. 4089-97.
159. E. Koren, A. Apte, R.R. Sawant, J. Grunwald, and V.P. Torchilin, Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv, 2011. 18: p. 377-84.
160. Y.F. Zhang, J.C. Wang, D.Y. Bian, X. Zhang, and Q. Zhang, Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur J Pharm Biopharm, 2010. 74: p. 467-73.
161. H. Zhao, J.C. Wang, Q.S. Sun, C.L. Luo, and Q. Zhang, RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target, 2009. 17: p. 10-8.
162. X. Zhou, M. Zhang, B. Yung, H. Li, C. Zhou, L.J. Lee, and R.J. Lee, Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int J Nanomedicine, 2012. 7: p. 5465-74.
163. K. Laginha, D. Mumbengegwi, and T. Allen, Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity. Biochim Biophys Acta, 2005. 1711: p. 25-32.
164. G.N. Chiu, L.A. Edwards, A.I. Kapanen, M.M. Malinen, W.H. Dragowska, C. Warburton, G.G. Chikh, K.Y. Fang, S. Tan, J. Sy, C. Tucker, D.N. Waterhouse, R. Klasa, and M.B. Bally, Modulation of cancer cell survival pathways using multivalent liposomal therapeutic antibody constructs. Mol Cancer Ther, 2007. 6: p. 844-55.
165. D.B. Kirpotin, D.C. Drummond, Y. Shao, M.R. Shalaby, K. Hong, U.B. Nielsen, J.D. Marks, C.C. Benz, and J.W. Park, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res, 2006. 66: p. 6732-40.
166. A. Yamada, Y. Taniguchi, K. Kawano, T. Honda, Y. Hattori, and Y. Maitani, Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res, 2008. 14: p. 8161-8.
167. R. Suzuki, T. Takizawa, Y. Kuwata, M. Mutoh, N. Ishiguro, N. Utoguchi, A. Shinohara, M. Eriguchi, H. Yanagie, and K. Maruyama, Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm, 2008. 346: p. 143-50.
168. T. Kobayashi, T. Ishida, Y. Okada, S. Ise, H. Harashima, and H. Kiwada, Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm, 2007. 329: p. 94-102.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *