帳號:guest(18.116.63.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周明慧
作者(外文):Chou, Ming Hui
論文名稱(中文):B型肝炎病毒的感染對於粒線體動態行為之調控及其生理意義
論文名稱(外文):The Impact of Hepatitis B Virus Infection on Mitochondrial Dynamics and its Biological Significance
指導教授(中文):王慧菁
指導教授(外文):Wang, Hui Ching
口試委員(中文):張壯榮
高茂傑
口試委員(外文):Chang, Chuang Rong
Kao, Mao Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080529
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:55
中文關鍵詞:B型肝炎病毒粒線體粒線體動態平衡
外文關鍵詞:Hepatitis B Virus (HBV)MitochondriaMitochondrial Dynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝癌是全球常見的癌症之一,形成肝癌許多危險因子中,B型肝炎病毒感染和肝癌的發展有高度相關。粒線體是調控細胞許多功能的重要胞器,包括ATP的生成、細胞代謝、鈣離子濃度穩態、活性氧分子信號途徑、以及細胞生存等。粒線體進行融合和分裂的動態,能夠維持粒線體的數量、生物質量、型態和功能。先前,許多研究已經指出HBx突變和pre-S突變在肝癌形成中扮演重要角色,除此,HBx已經被證實會促使粒線體動態的不平衡,然而,顯少研究致力於LHBs和粒線體之間的關聯。本研究中,我們目的是探討LHBs對於粒線體動態平衡的調控機制,以及其生理意義。我們發現,在肝癌細胞中,HBV或LHBs會透過Drp1使得粒線體的動態平衡偏向分裂(Fission),然而,在此狀況抑制Drp1則會減少粒線體分裂,此外,Drp1也能調控細胞的自噬作用,並在養分匱乏時,影響細胞增殖。當Drp1被抑制時,會顯著地減少HBV蛋白生成、病毒的分泌、以及cccDNA的表現量。這些結果顯示:在肝癌細胞中,Drp1對於HBV的複製和病毒蛋白的生成扮演相當重要的角色。若瞭解Drp1參與HBV複製的調控機制,將有利於發展出新的治療方式,控制慢性B型肝炎感染的病人其肝癌的發生。
Hepatocellular carcinoma (HCC) is a common cancer worldwide. Among many risk factors, hepatitis B virus (HBV) infection is the major risk for development of HCC. Mitochondria is a critical organelle for cellular functions, including ATP production, metabolism, calcium homeostasis, reactive oxygen species (ROS) signaling pathway and cell survival. Mitochondrial dynamics, including fusion and fission, is essential to maintain the number, biomass, morphology, and function of mitochondria. Previous studies have suggested HBx mutant and pre-S mutant large surface antigen (LHBs) play important roles in HCC. HBx have been demonstrated that promote aberrant mitochondrial dynamics. Researches focusing on the association between LHBs and mitochondria are limited. In this study, we aim to clarify the underlying mechanism and biological implication of LHBs on mitochondrial dynamics. We found that HBV or LHBs switched mitochondrial dynamic balanced towards fission through dynamic-related protein 1 (Drp1). Overexpression of a dominant-negative Drp1 suppressed mitochondria fission in hepatocytes. Besides, Drp1 also regulated autophagy and cell growth, in particularly under nutrient deprivation. Surprisingly, in the absence of Drp1, HBV production, viral secretion, and even cccDNA expression were all declined significantly. These results indicate that Drp1 plays an important role in HBV replication and virion production in hepatocytes. Understanding the mechanism of Drp1-involved HBV replication will be beneficial to develop a novel therapeutic strategy to control HBV replication in patients with chronic HBV infection.
Abstracts 1
中文摘要 2
1. Introduction 3
1.1 Hepatitis B virus (HBV) and hepatocellular carcinoma (HCC) 3
1.2 Ground glass hepatocyte (GGH) and pre-S mutant 4
1.3 Mitochondria 5
1.3.1 Structure of mitochondria 5
1.3.2 Function of mitochondria 5
1.4 Mitochondrial dynamics 6
1.5 Autophagy and mitophagy 8
2. Hypothesis and specific aims 10
3. Material and methods 11
4. Results 18
4.1 HBV promote mitochondrial fragmentation in hepatocytes 18
4.2 HBV does not influence expressions of Mfn2 and Drp1 in HepG2 cell 18
4.3 HBV LHBs promote mitochondrial fragmentation in hTERT-immortalized hepatocytes 18
4.4 Drp1 is upregulated in WT-LHBs cells 19
4.5 Inhibitions of CDK1 and CDK5 increase elongated mitochondria and decrease cell viability in WT-LHBs cells 20
4.6 LHBs-induced mitochondrial fragmentation is dependent on Drp1 20
4.7 LHBs induces autophagy in hepatocytes 21
4.8 Mitochondrial membrane potential is decreased in WT-LHBs cells 22
4.9 Knockdown Drp1 reduces cell proliferation after recovery from serum starvation 23
4.10 Knockdown Drp1 attenuates HBV production and virus secretion in hepatocytes 23
5. Discussion 25
6. Figures 28
Figure 1. HBV promote mitochondrial fragmentation in hepatocytes. 28
Figure 2. HBV does not affect expressions of Mfn2 and Drp1 in HepG2 cells. 29
Figure 3. Both wild type and PreS2-mutant LHBs increases mitochondrial fragmentation in hTERT-immortalized hepatocytes. 30
Figure 4. Depletion of LHBs reduces mitochondrial fragmentation in WT-LHBs cells. 31
Figure 5. Mitochondrial fragmentation in WT-LHBs cells is mediated by increased fission. 32
Figure 6. Drp1 is upregulated in WT-LHBs cells but the depletion of LHBs does not restore Drp1 expression. 33
Figure 7. Inhibitions of CDK1 and CDK5 increase elongated mitochondria and decrease cell viability in WT-LHBs cells. 34
Figure 8. LHBs-induced mitochondrial fragmentation is dependent on Drp1. 35
Figure 9. Dominant negative Drp1 expression reduces mitochondrial fragmentation in WT-LHBs cells. 36
Figure 10. LHBs induces autophagy in hTERT-immortalized cells. 37
Figure 11. Knockdown LHBs attenuates autophagy in WT-LHBs cells. 38
Figure 12. Drp1 has no impact on autophagy in WT-LHBs cells. 39
Figure 13. Drp1 depletion reduces autophagy in HepG2 carrying HBV. 40
Figure 14. Drp1 depletion reduces autophagy in HuH7 carrying HBV. 41
Figure 15. Mitochondrial membrane potential is decreased in WT-LHBs cells. 42
Figure 16. Oxidative phosphorylation is declined in WT-LHBs cells upon Drp1 depletion. 43
Figure 17. Knockdown Drp1 reduces cell proliferation in WT-LHBs cells after recovery from serum starvation. 44
Figure 18. Knockdown Drp1 attenuates expression of HBV production in hepatocytes. 45
Figure 19. Depletion of Drp1 reduces the release of HBV viral particles and reduces the expression of cccDNA in hepatocytes. 46
Figure 20. Current model. 47
7. Reference 48
8. Tables 52
Table 1. Reagents 52
Table 2. Sequences for siRNA and shRNA targeting gene 53
Table 3. List of the drugs 53
Table 4. List of antibodies 54
Table 5. Buffer and solution preparation 55

1 Beasley, R. P. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942-1956 (1988).
2 Di Bisceglie, A. M. Hepatitis B and hepatocellular carcinoma. Hepatology 49, S56-60, doi:10.1002/hep.22962 (2009).
3 Okuda, H. Hepatocellular carcinoma development in cirrhosis. Best practice & research. Clinical gastroenterology 21, 161-173, doi:10.1016/j.bpg.2006.07.002 (2007).
4 Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. Journal of hepatology 45, 529-538, doi:10.1016/j.jhep.2006.05.013 (2006).
5 Glebe, D. & Bremer, C. M. The molecular virology of hepatitis B virus. Seminars in liver disease 33, 103-112, doi:10.1055/s-0033-1345717 (2013).
6 Seeger, C. & Mason, W. S. Hepatitis B virus biology. Microbiology and molecular biology reviews : MMBR 64, 51-68 (2000).
7 Beck, J. & Nassal, M. Hepatitis B virus replication. World journal of gastroenterology : WJG 13, 48-64 (2007).
8 Kremsdorf, D., Soussan, P., Paterlini-Brechot, P. & Brechot, C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25, 3823-3833, doi:10.1038/sj.onc.1209559 (2006).
9 Rabe, C. & Caselmann, W. H. Interaction of Hepatitis B virus with cellular processes in liver carcinogenesis. Critical reviews in clinical laboratory sciences 37, 407-429, doi:10.1080/10408360091174277 (2000).
10 Wang, H. C., Huang, W., Lai, M. D. & Su, I. J. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer science 97, 683-688, doi:10.1111/j.1349-7006.2006.00235.x (2006).
11 Hadziyannis, S., Gerber, M. A., Vissoulis, C. & Popper, H. Cytoplasmic hepatitis B antigen in "ground-glass" hepatocytes of carriers. Archives of pathology 96, 327-330 (1973).
12 Popper, H. The ground glass hepatocyte as a diagnostic hint. Human pathology 6, 517-520 (1975).
13 Wang, H. C. et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. The American journal of pathology 163, 2441-2449, doi:10.1016/S0002-9440(10)63599-7 (2003).
14 Fan, Y. F. et al. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 33, 277-286, doi:10.1053/jhep.2001.21163 (2001).
15 Su, I. J., Wang, H. C., Wu, H. C. & Huang, W. Y. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. Journal of gastroenterology and hepatology 23, 1169-1174, doi:10.1111/j.1440-1746.2008.05348.x (2008).
16 Henze, K. & Martin, W. Evolutionary biology: essence of mitochondria. Nature 426, 127-128, doi:10.1038/426127a (2003).
17 Degli Esposti, D. et al. Mitochondrial roles and cytoprotection in chronic liver injury. Biochemistry research international 2012, 387626, doi:10.1155/2012/387626 (2012).
18 Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in biochemical sciences 35, 505-513, doi:10.1016/j.tibs.2010.04.002 (2010).
19 Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiological reviews 87, 99-163, doi:10.1152/physrev.00013.2006 (2007).
20 Brenner, C. & Moulin, M. Physiological roles of the permeability transition pore. Circulation research 111, 1237-1247, doi:10.1161/CIRCRESAHA.112.265942 (2012).
21 Picard, M., Taivassalo, T., Gouspillou, G. & Hepple, R. T. Mitochondria: isolation, structure and function. The Journal of physiology 589, 4413-4421, doi:10.1113/jphysiol.2011.212712 (2011).
22 Meyer, J. N. & Bess, A. S. Involvement of autophagy and mitochondrial dynamics in determining the fate and effects of irreparable mitochondrial DNA damage. Autophagy 8, 1822-1823 (2012).
23 Bess, A. S., Crocker, T. L., Ryde, I. T. & Meyer, J. N. Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic acids research 40, 7916-7931, doi:10.1093/nar/gks532 (2012).
24 Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160, 189-200, doi:10.1083/jcb.200211046 (2003).
25 Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189, doi:10.1016/j.cell.2006.06.025 (2006).
26 Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular biology of the cell 12, 2245-2256 (2001).
27 Cho, B., Choi, S. Y., Cho, H. M., Kim, H. J. & Sun, W. Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Experimental neurobiology 22, 149-157, doi:10.5607/en.2013.22.3.149 (2013).
28 Suzuki, M., Jeong, S. Y., Karbowski, M., Youle, R. J. & Tjandra, N. The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. Journal of molecular biology 334, 445-458 (2003).
29 Loson, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular biology of the cell 24, 659-667, doi:10.1091/mbc.E12-10-0721 (2013).
30 Wasilewski, M. & Scorrano, L. The changing shape of mitochondrial apoptosis. Trends in endocrinology and metabolism: TEM 20, 287-294, doi:10.1016/j.tem.2009.03.007 (2009).
31 Kim, S. J. et al. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS pathogens 9, e1003722, doi:10.1371/journal.ppat.1003722 (2013).
32 Lee, Y. I. et al. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. The Journal of biological chemistry 279, 15460-15471, doi:10.1074/jbc.M309280200 (2004).
33 Rawat, S., Clippinger, A. J. & Bouchard, M. J. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 4, 2945-2972, doi:10.3390/v4112945 (2012).
34 Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109-1112, doi:10.1126/science.1201940 (2011).
35 Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature reviews. Molecular cell biology 12, 9-14, doi:10.1038/nrm3028 (2011).
36 Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Molecular cell 40, 280-293, doi:10.1016/j.molcel.2010.09.023 (2010).
37 Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of clinical investigation 112, 1809-1820, doi:10.1172/JCI20039 (2003).
38 Ding, W. X. & Yin, X. M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological chemistry 393, 547-564, doi:10.1515/hsz-2012-0119 (2012).
39 Suen, D. F., Narendra, D. P., Tanaka, A., Manfredi, G. & Youle, R. J. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proceedings of the National Academy of Sciences of the United States of America 107, 11835-11840, doi:10.1073/pnas.0914569107 (2010).
40 Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of cell biology 183, 795-803, doi:10.1083/jcb.200809125 (2008).
41 Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry 282, 24131-24145, doi:10.1074/jbc.M702824200 (2007).
42 Seibenhener, M. L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Molecular and cellular biology 24, 8055-8068, doi:10.1128/MCB.24.18.8055-8068.2004 (2004).
43 Lu, H. et al. Regulation and function of mitophagy in development and cancer. Autophagy 9, 1720-1736, doi:10.4161/auto.26550 (2013).
44 Lee, S. & Kim, J. S. Mitophagy: therapeutic potentials for liver disease and beyond. Toxicological research 30, 243-250, doi:10.5487/TR.2014.30.4.243 (2014).
45 Chong, C. L. et al. Dynamics of HBV cccDNA expression and transcription in different cell growth phase. Journal of biomedical science 18, 96, doi:10.1186/1423-0127-18-96 (2011).
46 Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. The Journal of biological chemistry 282, 11521-11529, doi:10.1074/jbc.M607279200 (2007).
47 Meuer, K. et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell death and differentiation 14, 651-661, doi:10.1038/sj.cdd.4402087 (2007).
48 Cho, B. et al. CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Experimental & molecular medicine 46, e105, doi:10.1038/emm.2014.36 (2014).
49 Joshi, D. C. & Bakowska, J. C. Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. Journal of visualized experiments : JoVE, doi:10.3791/2704 (2011).
50 Ortiz-Sandoval, C. G., Hughes, S. C., Dacks, J. B. & Simmen, T. Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. Cellular logistics 4, e986399, doi:10.4161/21592799.2014.986399 (2014).
51 Bui, M. et al. Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. The Journal of biological chemistry 285, 31590-31602, doi:10.1074/jbc.M110.101584 (2010).
52 Ortiz Sandoval, C. & Simmen, T. Rab proteins of the endoplasmic reticulum: functions and interactors. Biochemical Society transactions 40, 1426-1432, doi:10.1042/BST20120158 (2012).
53 Li, J. et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. Journal of virology 85, 6319-6333, doi:10.1128/JVI.02627-10 (2011).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *