帳號:guest(3.149.214.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姚莉歆
作者(外文):Yao, Li Hsin
論文名稱(中文):人類第一酵素複合體 NDUFS7 次單元蛋白與 Sumoylation 交互作用及對壓力之反應
論文名稱(外文):Sumoylation of human mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) and its association with various stress responses
指導教授(中文):高茂傑
指導教授(外文):Kao, Mou Chieh
口試委員(中文):林立元
張壯榮
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:102080520
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:66
中文關鍵詞:第一酵素複合體NDUFS7次單元NDUFS7次單元
外文關鍵詞:NDUFS7Sumoylationstress responses
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) 為人類粒線體中第一酵素複合體44個次單元當中的其中一個次單元。NDUFS7序列1-60的胺基酸被認定為一段有效的mitochondrial targeting sequences (MTS),我們也發現此蛋白質C端末尾序列含有一段可能的nuclear localization signal (NLS) 以及一段可能的nuclear export signal (NES)。NDUFS7作為粒線體第一酵素複合體中電子傳遞鍊的末端,有一特殊的胺基酸序列(motif): CCXXE(X)60C(X)30CP,其在各種物種上具有高度的保留性,此motif能夠與帶有N2 [4Fe-4S] cluster 的鐵硫中心相接,成為重要的氧化還原中心。在先前的研究中我們發現NDUFS7為sumoylation 的受質。Sumoylation為一種轉譯後修飾,SUMO蛋白會透過E1酵素的活化與E2 酵素 (UBC9) 相接,再透過E3酵素或者獨立將SUMO蛋白轉移到受質上。Sumoylation的相關研究指出,受sumoylation修飾的蛋白能參與相當多樣的細胞生物過程,例如:蛋白質的運輸、活性、及對不同壓力的反應等。
在此研究當中,我們讓NDUFS7蛋白、SUMO-1蛋白和E2酵素UBC9大量表現於HEK293細胞中,再透過分離出胞器的方式探討sumoylation在細胞當中修飾NDUFS7的位置與蛋白運輸之間的關聯,並且施予多種壓力誘導劑 (例如:氯化鈷、雙氧水、無血清培養液和細胞凋亡誘導試劑) 來探討其影響。從結果中可以發現,被SUMO-1修飾的NDUFS7能夠在細胞核與細胞質中被觀察到。另外,在施予氯化鈷所引起的缺氧情況下,NDUFS7的sumoylation也顯著增加。此外,我們也建構了NDUFS7-SUMO-1的質體並將其用於表現合成蛋白。其結果顯示此合成蛋白無法進入粒線體當中。基於本研究的發現,NDUFS7的sumoylation對於此蛋白質運輸以及其生理意義機制需要更深入的探討。
Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) is one of 44 subunits in mitochondrial complex I. The N-terminal 1-60 amino acids of NDUFS7 have been defined as a mitochondrial targeting sequence (MTS) and the C-terminus contains a nuclear localization signal (NLS) and a nuclear export signal (NES). The sequence of NDUFS7 is highly conserved in the motif: CCXXE(X)60C(X)30CP. It can bind to an iron-sulfur cluster (a [4Fe-4S] cluster) called N2, a redox center in the terminus of complex I electron transfer pathway. In previous study, we identified NDUFS7 as a protein substrate of sumoylation. Posttranslational modifications of proteins by the small ubiquitin-like modifier (SUMO) have been found to be associated with various cellular processes. The SUMO protein can be conjugated to a target protein by sequential actions of enzyme E1 (SAE1/2), enzyme E2 (UBC9) and E3 ligases. The proteins conjugated by SUMO could be involved in subcellular localization, function or responding to stresses.
In this study, NDUFS7, SUMO-1 and UBC9 were co-expressed in HEK293 cells to clarify its subcellular localization by cell fractionation. The result showed that the sumoylated NDUFS7 were present in both the nuclear and cytosol fractions. Then, we established a new construct which can express the NDUFS7-SUMO-1 fusion protein, and found that the fusion protein can block the mitochondrial import. Furthermore, the effect of different stress response on sumoylation of NDUFS7 was explored by treating cells with various stress inducers, such as CoCl2, H2O2, starvation and apoptosis reagents. The results suggested that CoCl2-induced hypoxia increases the sumoylation of NDUFS7. The effects of NDUFS7 sumoylation on the subcellular localization of the protein and its physiological consequence would be further explored.
中文摘要 I
Abstract II
Abbreviations V
Introduction 1
A. Mitochondrion 1
1.Mitochondrial structure and function 1
2.Mitochondrion oxidative phosphorylation system 2
3.Mitochondrial genome and nuclear-encoded mitochondrial proteins 3
4.Mitochondrial complex I structure and electron transfer 3
5.Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 4
6.The NDUFS7 deficiency and its related diseases 5
B. Sumoylation 7
1.Small ubiquitin-like modifier (SUMO) proteins 7
2.The sumoylation cycle 8
3.The sumoylation site 9
4.The effect of sumoylation on cellular processes 10
5.Sumoylation and protein subcellular transport 11
6.The sumoylation response on cellular stress 12
7.Sumoylation and mitochondria 15
The objective of this study 16
Materials and methods 17
Results 26
1.NDUFS7 has multiple sumoylation sites and the major modified site is Lys202 residue 26
2.Sumoylated NDUFS7 is present in both the nuclear and the cytosol fractions 27
3.Ectopically expressed NDUFS7(K202R)-SUMO-1AA fusion protein is majorly located in the cytosol fraction 28
4.The treatment of hypoxia-mimicking reagent CoCl2 increases the level of NDUFS7 sumoylation 29
5.Oxidative stress does not have a significant effect on sumoylation of NDUFS7 30
6.The level of NDUFS7 sumoylation is not significantly changed under the starvation-stress condition induced by serum reduction 31
7.Apoptosis and mitochondrial membrane potential depolarization slightly affect NDUFS7 sumoylation 31
Discussion 33
Tables 38
Figures 39
Figure 1. The triple Lys mutation of NDUFS7 can not complely abolish the sumoylated form NDUFS7. 39
Figure 2. Sumoylated NDUFS7 is present in both the nuclear and the cytosol fractions. 40
Figure 3. Ectopic expression of NDUFS7(K202R)-SUMO-1AA fusion protein and its subcellular locolization. 42
Figure 4. The treatment of hypoxia-mimicking reagent CoCl2 enhanced sumoylation of NDUFS7. 44
Figure 5. H2O2-induced oxidative stress does not have a significant effect on sumoylation of NDUFS7. 46
Figure 6. The level of NDUFS7 sumoylation is not significantly changed under the starvation-stress condition induced by serum reduction. 48
Figure 7. Both etoposide and carbonyl cyanide 4-phenylhydrazone treatment slightly affect NDUFS7 sumoylation. 50
Reference 51
Appendixes 58
[1] Omura, T. (1998) Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria, J Biochem 123, 1010-1016.
[2] Boekema, E. J., and Braun, H. P. (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system, J Biol Chem 282, 1-4.
[3] Li, Y., Park, J. S., Deng, J. H., and Bai, Y. (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex, J Bioenerg Biomembr 38, 283-291.
[4] Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B., and Gelbard, H. A. (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide, Biotechniques 50, 98-115.
[5] Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of oxidative phosphorylation, Nat Rev Genet 2, 342-352.
[6] Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., and Pfanner, N. (2009) Importing Mitochondrial Proteins: Machineries and Mechanisms, Cell 138, 628-644.
[7] Andrews, B., Carroll, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2013) Assembly factors for the membrane arm of human complex I, Proc Natl Acad Sci U S A 110, 18934-18939.
[8] Sazanov, L. A., and Hinchliffe, P. (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, Science 311, 1430-1436.
[9] Mathiesen, C., and Hagerhall, C. (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters, Biochim Biophys Acta 1556, 121-132.
[10] Hinchliffe, P., and Sazanov, L. A. (2005) Organization of iron-sulfur clusters in respiratory complex I, Science 309, 771-774.
[11] Hirst, J., Carroll, J., Fearnley, I. M., Shannon, R. J., and Walker, J. E. (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria, Biochim Biophys Acta 1604, 135-150.
[12] Ohnishi, T. (1998) Iron-sulfur clusters/semiquinones in complex I, Biochim Biophys Acta 1364, 186-206.
[13] Hyslop, S. J., Duncan, A. M., Pitkanen, S., and Robinson, B. H. (1996) Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13, Genomics 37, 375-380.
[14] Lebon, S., Minai, L., Chretien, D., Corcos, J., Serre, V., Kadhom, N., Steffann, J., Pauchard, J. Y., Munnich, A., Bonnefont, J. P., and Rotig, A. (2007) A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome, Mol Genet Metab 92, 104-108.
[15] Triepels, R. H., van den Heuvel, L. P., Loeffen, J. L., Buskens, C. A., Smeets, R. J., Rubio Gozalbo, M. E., Budde, S. M., Mariman, E. C., Wijburg, F. A., Barth, P. G., Trijbels, J. M., and Smeitink, J. A. (1999) Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I, Ann Neurol 45, 787-790.
[16] Frykman, S., Teranishi, Y., Hur, J. Y., Sandebring, A., Yamamoto, N. G., Ancarcrona, M., Nishimura, T., Winblad, B., Bogdanovic, N., Schedin-Weiss, S., Kihara, T., and Tjernberg, L. O. (2012) Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing, Neurochem Int 61, 108-118.
[17] Andreazza, A. C., Shao, L., Wang, J., and Young, L. (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder, Archives of General Psychiatry 67, 360-368.
[18] Schwartz, D. C., and Hochstrasser, M. (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers, Trends in Biochemical Sciences 28, 321-328.
[19] Meluh, P. B., and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C, Mol Biol Cell 6, 793-807.
[20] Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K., and Chen, D. J. (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins, Genomics 36, 271-279.
[21] Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin, J Immunol 157, 4277-4281.
[22] Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2, Cell 88, 97-107.
[23] Tanaka, K., Nishide, J., Okazaki, K., Kato, H., Niwa, O., Nakagawa, T., Matsuda, H., Kawamukai, M., and Murakami, Y. (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation, Mol Cell Biol 19, 8660-8672.
[24] Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., and Owerbach, D. (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus, J Biol Chem 279, 27233-27238.
[25] Melchior, F. (2000) SUMO--nonclassical ubiquitin, Annu Rev Cell Dev Biol 16, 591-626.
[26] Klein, U. R., Haindl, M., Nigg, E. A., and Muller, S. (2009) RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin, Mol Biol Cell 20, 410-418.
[27] Wang, C. Y., and She, J. X. (2008) SUMO4 and its role in type 1 diabetes pathogenesis, Diabetes Metab Res Rev 24, 93-102.
[28] Wang, C.-Y., Yang, P., Li, M., and Gong, F. (2009) Characterization of a negative feedback network between SUMO4 expression and NFκB transcriptional activity, Biochemical and Biophysical Research Communications 381, 477-481.
[29] Hickey, C. M., Wilson, N. R., and Hochstrasser, M. (2012) Function and regulation of SUMO proteases, Nat Rev Mol Cell Biol 13, 755-766.
[30] Gong, L., Li, B., Millas, S., and Yeh, E. T. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex, FEBS Lett 448, 185-189.
[31] Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., and Lima, C. D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1, Cell 108, 345-356.
[32] Droescher, M., Chaugule, V. K., and Pichler, A. (2013) SUMO rules: regulatory concepts and their implication in neurologic functions, Neuromolecular Med 15, 639-660.
[33] Matic, I., Schimmel, J., Hendriks, I. A., van Santen, M. A., van de Rijke, F., van Dam, H., Gnad, F., Mann, M., and Vertegaal, A. C. (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif, Mol Cell 39, 641-652.
[34] Pichler, A., Knipscheer, P., Oberhofer, E., van Dijk, W. J., Korner, R., Olsen, J. V., Jentsch, S., Melchior, F., and Sixma, T. K. (2005) SUMO modification of the ubiquitin-conjugating enzyme E2-25K, Nat Struct Mol Biol 12, 264-269.
[35] Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., and Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification, Proc Natl Acad Sci U S A 103, 45-50.
[36] Picard, N., Caron, V., Bilodeau, S., Sanchez, M., Mascle, X., Aubry, M., and Tremblay, A. (2012) Identification of estrogen receptor beta as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta, Mol Cell Biol 32, 2709-2721.
[37] Yang, S. H., Galanis, A., Witty, J., and Sharrocks, A. D. (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO, EMBO J 25, 5083-5093.
[38] Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., Wenshuk, H., and Thibault, P. (2013) Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions, Mol Cell Proteomics 12, 2536-2550.
[39] Praefcke, G. J. K., Hofmann, K., and Dohmen, R. J. (2012) SUMO playing tag with ubiquitin, Trends in Biochemical Sciences 37, 23-31.
[40] Ullmann, R., Chien, C. D., Avantaggiati, M. L., and Muller, S. (2012) An acetylation switch regulates SUMO-dependent protein interaction networks, Mol Cell 46, 759-770.
[41] Cubenas-Potts, C., and Matunis, M. J. (2013) SUMO: a multifaceted modifier of chromatin structure and function, Dev Cell 24, 1-12.
[42] Flotho, A., and Melchior, F. (2013) Sumoylation: a regulatory protein modification in health and disease, Annu Rev Biochem 82, 357-385.
[43] Hudson, J. J. R., Chiang, S.-C., Wells, O. S., Rookyard, C., and El-Khamisy, S. F. (2012) SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair, Nat Commun 3, 733.
[44] Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y. Z., Cattaneo, E., Pandolfi, P. P., Thompson, L. M., and Marsh, J. L. (2004) SUMO modification of Huntingtin and Huntington's disease pathology, Science 304, 100-104.
[45] Sapir, A., Tsur, A., Koorman, T., Ching, K., Mishra, P., Bardenheier, A., Podolsky, L., Bening-Abu-Shach, U., Boxem, M., Chou, T. F., Broday, L., and Sternberg, P. W. (2014) Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging, Proc Natl Acad Sci U S A 111, E3880-3889.
[46] Zhang, J., Yuan, C., Wu, J., Elsayed, Z., and Fu, Z. (2015) Polo-like kinase 1-mediated phosphorylation of Forkhead box protein M1b antagonizes its SUMOylation and facilitates its mitotic function, J Biol Chem 290, 3708-3719.
[47] Santiago, A., Li, D., Zhao, L. Y., Godsey, A., and Liao, D. (2013) p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1, Mol Biol Cell 24, 2739-2752.
[48] Chen, L., Ma, Y., Qian, L., and Wang, J. (2013) Sumoylation regulates nuclear localization and function of zinc finger transcription factor ZIC3, Biochim Biophys Acta 1833, 2725-2733.
[49] Saitoh, H., and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3, J Biol Chem 275, 6252-6258.
[50] Tempe, D., Piechaczyk, M., and Bossis, G. (2008) SUMO under stress, Biochem Soc Trans 36, 874-878.
[51] Bossis, G., and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes, Mol Cell 21, 349-357.
[52] Xu, Z., Lam, L. S., Lam, L. H., Chau, S. F., Ng, T. B., and Au, S. W. (2008) Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation, FASEB J 22, 127-137.
[53] Ke, Q., and Costa, M. (2006) Hypoxia-inducible factor-1 (HIF-1), Mol Pharmacol 70, 1469-1480.
[54] Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P., and Taylor, C. T. (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia, Proc Natl Acad Sci U S A 100, 986-991.
[55] Wang, J., Wang, Y., and Lu, L. (2012) De-SUMOylation of CCCTC binding factor (CTCF) in hypoxic stress-induced human corneal epithelial cells, J Biol Chem 287, 12469-12479.
[56] Fariss, M. W., Chan, C. B., Patel, M., Van Houten, B., and Orrenius, S. (2005) Role of mitochondria in toxic oxidative stress, Mol Interv 5, 94-111.
[57] Grattagliano, I., Vendemiale, G., Caraceni, P., Domenicali, M., Nardo, B., Cavallari, A., Trevisani, F., Bernardi, M., and Altomare, E. (2000) Starvation impairs antioxidant defense in fatty livers of rats fed a choline-deficient diet, J Nutr 130, 2131-2136.
[58] Prem, P., Parihar, M. S., Malini, L., and Pradeep, K. G. (1998) Starvation induced hypothyroidism involves perturbations in thyroid superoxide-SOD system in pigeons, Biochem Mol Biol Int 45, 73-83.
[59] Pirkmajer, S., and Chibalin, A. V. (2011) Serum starvation: caveat emptor, Am J Physiol Cell Physiol 301, C272-279.
[60] Guo, D., Han, J., Adam, B. L., Colburn, N. H., Wang, M. H., Dong, Z., Eizirik, D. L., She, J. X., and Wang, C. Y. (2005) Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress, Biochem Biophys Res Commun 337, 1308-1318.
[61] Bassi, C., Ho, J., Srikumar, T., Dowling, R. J., Gorrini, C., Miller, S. J., Mak, T. W., Neel, B. G., Raught, B., and Stambolic, V. (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress, Science 341, 395-399.
[62] van der Bliek, A. M. (2000) A Mitochondrial Division Apparatus Takes Shape, The Journal of Cell Biology 151, f1-f4.
[63] Harder, Z., Zunino, R., and McBride, H. (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission, Curr Biol 14, 340-345.
[64] Wasiak, S., Zunino, R., and McBride, H. M. (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death, J Cell Biol 177, 439-450.
[65] Huang, Y., Du, K. M., Xue, Z. H., Yan, H., Li, D., Liu, W., Chen, Z., Zhao, Q., Tong, J. H., Zhu, Y. S., and Chen, G. Q. (2003) Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1[alpha], Leukemia 17, 2065-2073.
[66] Asikainen, T. M., Schneider, B. K., Waleh, N. S., Clyman, R. I., Ho, W. B., Flippin, L. A., Gunzler, V., and White, C. W. (2005) Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung, Proc Natl Acad Sci U S A 102, 10212-10217.
[67] Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science 292, 468-472.
[68] Siddiq, A., Aminova, L. R., Troy, C. M., Suh, K., Messer, Z., Semenza, G. L., and Ratan, R. R. (2009) Selective inhibition of hypoxia-inducible factor prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF and CREB independent pathways, The Journal of Neuroscience 29, 8828-8838.
[69] Cho, E. A., Song, H. K., Lee, S. H., Chung, B. H., Lim, H. M., and Lee, M. K. (2013) Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases, J Cell Biochem 114, 864-873.
[70] Hirsila, M., Koivunen, P., Xu, L., Seeley, T., Kivirikko, K. I., and Myllyharju, J. (2005) Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway, FASEB J 19, 1308-1310.
[71] Rambold, A. S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation, Proceedings of the National Academy of Sciences 108, 10190-10195.
[72] Böttger, S., Jerszyk, E., Low, B., and Walker, C. (2008) Genotoxic stress–induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53, Cancer research 68, 777-782.
[73] Elmore, S. (2007) Apoptosis: a review of programmed cell death, Toxicol Pathol 35, 495-516.
[74] Jamshidiha, M., Habibollahi, P., Ostad, S., and Ghahremani, M. (2010) Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells, Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences 18, 141.
[75] Yuan, Y., Hilliard, G., Ferguson, T., and Millhorn, D. E. (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α, Journal of Biological Chemistry 278, 15911-15916.
[76] Triantafyllou, A., Liakos, P., Tsakalof, A., Georgatsou, E., Simos, G., and Bonanou, S. (2006) Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism, Free Radic Res 40, 847-856.
[77] Zhou, J., Schmid, T., Frank, R., and Brüne, B. (2004) PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1α from pVHL-independent degradation, Journal of Biological Chemistry 279, 13506-13513.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. SUMO-1調控人類粒線體第一蛋白質複合體中NDUFS7次單元sumoylation修飾之研究
2. 人類粒線體第一蛋白質複合體NDUFS7次單元Sumoylation修飾及對其在細胞內分佈之影響
3. Study on allotopic expression of recoded human mitochondrial ND4L genes in mammalian cells
4. 探討人類粒線體第一蛋白質複合體ND3次單元之同素異位基因表現
5. 胃幽門螺旋桿菌26695菌株之D型阿拉伯糖-5-磷酸異構酶由HP1429基因所表現之特性研究
6. Studies on the import into mitochondria of the human ND4L subunit by reengineered nuclear genes
7. 人類粒線體第一蛋白質複合體中NDUFS7次單元擁有粒線體與細胞核兩種不同的分佈
8. 研究粒線體酵素複合體I中NDUFV2次單元的功能及其粒線體標的訊號
9. 胃幽門螺旋桿菌26695菌株之ADP-L-glycero-D-manno-heptose-6-epimerase由HP0859基因所表現之特性研究
10. Characterization and identification of Helicobacter pylori 26695 phosphopantetheine adenylyltransferase encoded by hp1475
11. 利用異位及異種表現的方式探討衣藻細胞核版粒線體呼吸鏈相關基因在人類細胞中之表現
12. 粒線體NDUFS8次單元功能分析及其粒線體標的訊號之研究
13. The functional study of NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) subunit and its iron-sulfur cluster in human mitochondrial complex I under oxidative stress
14. 胃幽門螺旋桿菌26695菌株之phosphoheptose isomerase由 hp0857基因所表現之特性研究
15. 胃幽門桿菌HP0860基因缺失對脂多醣生合成的影響
 
* *