帳號:guest(18.118.9.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宜芬
作者(外文):Hsieh, Yi-Fen
論文名稱(中文):新穎醣胺多醣結合胜肽於表皮癌細胞移行與侵襲的調控作用
論文名稱(外文):Regulatory effects of novel glycosaminoglycan binding peptides on epithelial cancer migration and invasion
指導教授(中文):張大慈
指導教授(外文):Chang, Dah-Tsyr
口試委員(中文):王慧菁
李佳霖
周裕珽
郭靜娟
口試委員(外文):Wang, Hui-Ching
Lee, Jia-Lin
Chou, Yu-Ting
Kuo, Ching-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:102080509
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:130
中文關鍵詞:醣胺多醣結合胜肽細胞穿透胜肽表皮癌細胞腫瘤移行與侵襲抑制
外文關鍵詞:glycosaminoglycan binding peptidecell penetrating peptideepithelial canceranti-migration/anti-invasion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
惡性腫瘤蟬聯全球十大死因首位,傳統化療藥物無法有效運送至腫瘤組織,易使腫瘤復發與轉移,導致癌症治療成果有限。抗癌胜肽藥物與傳統化療藥物作用機制不同、且具有專一性腫瘤標靶與低毒性反應之優點,因此為具潛力的新穎抗癌用藥。本實驗室率先於人類嗜酸性白血球陽離子蛋白(human eosinophil cationic protein、hECP)中核心硫酸乙醯肝素結合區域(heparan sulfate binding motif)衍生一段新穎性醣胺多醣結合胜肽(GAG-binding cell penetrating peptide、GBPHH),並發現其具備抑癌作用。本研究另行設計三種不同定點突變序列之GBPHH衍生胜肽(GBPHH(C6S)、GBPHL與GBPLL),以測試其序列與功能之相關性,並發現GBPHH與其衍生胜肽對於人類表皮癌細胞具有不同的細胞結合與細胞穿透能力。以A549人類肺腺癌細胞為例,細胞穿透能力最高的GBPHH及次高的GBPHH(C6S)可明顯抑制此表皮癌細胞移行及侵襲活性,然而具有高細胞結合力與低細胞穿透功能的GBPHL和具有低細胞結合力與低穿透細胞功能的GBPLL則無抑制效果。進一步探討GBPs抑制癌細胞轉移之分子機制,發現GBPHH可降低細胞轉移相關細胞內訊號傳遞蛋白質的磷酸化活性。本研究首次發現GBPHH結合癌細胞表面硫酸乙醯肝素、穿透癌細胞、調控細胞內訊號傳遞、抑制表皮癌細胞移行與侵襲之關聯性。本研究成果可具體貢獻於新型抗癌胜肽設計,化學修飾抗癌藥物合成,開發以GBPHH為基礎之表皮癌細胞用藥新型配方與傳輸系統。
Cancer is a leading cause of mortality worldwide. Conventional chemotherapeutic agents for cancers do not distinguish between malignant and normal cells, leading to only limited success and high recurrence rates. Peptide-based treatments for cancer therapy have been of great interest and potential due to advantages including different regulation mechanisms, specific target to tumor cells, and low toxicity in normal tissues. A sulfated GAG-binding peptide (GBPHH) derived from core heparan sulfate (HS) binding motif of human eosinophil cationic protein (hECP) has been recently identified to have anti-tumor functions. In this study GBPHH and 3 derivates (GBPHH(C6S), GBPHL and GBPLL) with variation in only 1 out of 10 amino acids in sequence displayed distinct binding and penetrating activities toward epithelial cancer cells. Interestingly, migration and invasion activities of epithelial cancer cells were significantly inhibited by GBPHH with higher binding and the highest penetration activities, so as GBPHH(C6S). However, GBPHL with the highest binding and lower penetration activities and GBPLL with the lowest binding and penetration activities showed much weaker inhibitory effects. As for molecular mechanisms, phosphorylation of migration-associated molecules decreased upon treatment with GBPHH. GBPHH as a novel metastatic suppressor which acts through initial GAG binding and cell penetration, involved in modulation of cellular signals of epithelial cancer cells. Understanding sequence dependence and anti-tumor mechanisms of GBPHH provides alternative strategies to design more efficacious peptides, synthesize chemically modified drugs, and develop novel formulation and delivery system of GBPHH-based drugs for anti-epithelial cancer.
中文摘要 II
Abstract III
Acknowledgement IV
List of Contents V
List of Figures VIII
List of Tables X
List of Appendices XI
Abbreviates XIII
Chapter 1 Introduction 1
1-1 Secretion of human eosinophil cationic proteins by activated eosinophils 1
1-2 GAG-binding peptide derived from ECP 2
1-3 Glycosaminoglycans (GAGs) 4
1-4 Roles of GAG in cancer progression 5
1-5 Epithelial cancer 7
1-6 Angiogenesis, migration, and invasion 9
1-7 Epithelial-mesenchymal transition (EMT) 14
Specific Aims 15
Chapter 2 Materials and Methods 16
2-1 Bacterial strains, vectors, and cell culture 16
2-2 Competent cell preparation and transformation 16
2-3 Expression of recombinant 6His-eGFP and 6His-eGFP-GBPHH 17
2-4 Purification of recombinant 6His-eGFP and 6His-eGFP-GBPHH 17
2-5 Buffer exchange, protein concentration and quantification 18
2-6 RNase activity of recombinant ECP 18
2-7 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 19
2-8 Cells and cell culture 20
2-9 Cell viability assay 20
2-10 ELISA (Cell enzyme-linked immunosorbent assay) 21
2-11 Flow cytometry 22
2-12 In vitro cell migration assay (Wound healing assay) 22
2-13 In vitro cell migration and invasion assay (Transwell® assay) 22
2-14 Western blotting 24
2-15 Cell adhesion assay 25
2-16 Immunofluorescence staining 26
2-17 Statistical analysis 27
Chapter 3 Results 28
3-1 FITC-GBPHH and homologous peptide binding activities to A549 lung cancer cells 28
3-2 Penetration activities of GBPHH and homologous peptides 29
3-3 Effects of GBPHH and homologous peptides on A549 migration 31
3-4 Effects of GBPHH and homologous peptides on A549 invasion 32
3-5 Effect of heparin binding on anti-migration activity by GBPHH 33
3-6 Inhibition of VEGF-induced phosphorylation of FAK, Src, and Erk1/2 by GBPHH 34
3-7 Down-regulation of epithelial-to-mesenchymal transition (EMT) in A549 cells by GBPHH 36
3-8 GBPHH did not mediate expressions of α- and β-integrin on cell surface 37
3-9 FITC-GBPHH binding activities to multiple epithelial cancer cells 39
3-10 Viability of OC3 cells in the presence of GBPHH 40
3-11 Effects of GBPHH on oral cancer cell migration 41
3-12 Down-regulation of epithelial-to-mesenchymal transition (EMT) in OC3-I5 cells by GBPHH 42
Chapter 4 Discussion 44
References 56
Figures 70
Tables 100
Appendix Figures 104
Appendix Tables 122
1. Rothenberg ME, Hogan SP: The eosinophil. Annual review of immunology 2006, 24:147-174.
2. McEwen BJ: Eosinophils: a review. Veterinary research communications 1992, 16(1):11-44.
3. Gleich GJ, Loegering DA: Immunobiology of eosinophils. Annual review of immunology 1984, 2:429-459.
4. Weller PF: Eosinophils: structure and functions. Current opinion in immunology 1994, 6(1):85-90.
5. Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L, Trulson A: Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 1999, 29(9):1172-1186.
6. Stenfeldt AL, Wenneras C: Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 2004, 112(4):605-614.
7. Gleich GJ, Adolphson CR: The eosinophilic leukocyte: structure and function. Advances in immunology 1986, 39:177-253.
8. Molina HA, Kierszenbaum F, Hamann KJ, Gleich GJ: Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. The American journal of tropical medicine and hygiene 1988, 38(2):327-334.
9. Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogues MV: Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 2005, 272(1-2):1-7.
10. Motojima S, Frigas E, Loegering DA, Gleich GJ: Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 1989, 139(3):801-805.
11. Ali S, Kaur J, Patel KD: Intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and regulated on activation normal T cell expressed and secreted are expressed by human breast carcinoma cells and support eosinophil adhesion and activation. Am J Pathol 2000, 157(1):313-321.
12. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ: Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. Journal of immunology (Baltimore, Md : 1950) 1989, 142(12):4428-4434.
13. Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF: Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic acids research 1998, 26(14):3358-3363.
14. Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK, Boix E: Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 2007, 46(3):720-733.
15. Young JD, Peterson CG, Venge P, Cohn ZA: Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 1986, 321(6070):613-616.
16. Peterson CG, Jornvall H, Venge P: Purification and characterization of eosinophil cationic protein from normal human eosinophils. European journal of haematology 1988, 40(5):415-423.
17. Malabanan AO, Turner AK, Rosenberg IN, Holick MF: Oncogenic osteomalacia: clinical presentation, densitometric findings, and response to therapy. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry 1998, 1(1):77-80.
18. Rosenberg HF, Ackerman SJ, Tenen DG: Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med 1989, 170(1):163-176.
19. Mallorqui-Fernandez G, Pous J, Peracaula R, Aymami J, Maeda T, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Ruth FX et al: Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. Journal of molecular biology 2000, 300(5):1297-1307.
20. Rosenberg HF: Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. The Journal of biological chemistry 1995, 270(14):7876-7881.
21. Makarov AA, Ilinskaya ON: Cytotoxic ribonucleases: molecular weapons and their targets. FEBS letters 2003, 540(1-3):15-20.
22. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M: Growth inhibition of mammalian cells by eosinophil cationic protein. European journal of biochemistry / FEBS 2002, 269(1):307-316.
23. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ: Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proceedings of the National Academy of Sciences of the United States of America 1986, 83(10):3146-3150.
24. Fan TC, Chang HT, Chen IW, Wang HY, Chang MD: A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 2007, 8(12):1778-1795.
25. Fang SL, Fan TC, Fu HW, Chen CJ, Hwang CS, Hung TJ, Lin LY, Chang MD: A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One 2013, 8(3):e57318.
26. Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC, Chang MD: Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem 2008, 283(37):25468-25474.
27. Lien PC, Kuo PH, Chen CJ, Chang HH, Fang SL, Wu WS, Lai YK, Pai TW, Chang MD: In silico prediction and in vitro characterization of multifunctional human RNase3. Biomed Res Int 2013, 2013:170398.
28. Chen C-J, Tsai K-C, Kuo P-H, Chang P-L, Wang W-C, Chuang Y-J, Chang MD-T: A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BioMed Research International.
29. Prydz K, Dalen KT: Synthesis and sorting of proteoglycans. Journal of cell science 2000, 113 Pt 2:193-205.
30. Gandhi NS, Mancera RL: The structure of glycosaminoglycans and their interactions with proteins. Chemical biology & drug design 2008, 72(6):455-482.
31. Abes R, Arzumanov AA, Moulton HM, Abes S, Ivanova GD, Iversen PL, Gait MJ, Lebleu B: Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochemical Society transactions 2007, 35(Pt 4):775-779.
32. Knelson EH, Nee JC, Blobe GC: Heparan sulfate signaling in cancer. Trends in biochemical sciences 2014, 39(6):277-288.
33. Fernandez-Vega I, Garcia O, Crespo A, Castanon S, Menendez P, Astudillo A, Quiros LM: Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer. BMC Cancer 2013, 13:24.
34. Sarrazin S, Lamanna WC, Esko JD: Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011, 3(7).
35. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK: Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. The FEBS journal 2010, 277(19):3904-3923.
36. Hirabayashi K, Numa F, Suminami Y, Murakami A, Murakami T, Kato H: Altered proliferative and metastatic potential associated with increased expression of syndecan-1. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 1998, 19(6):454-463.
37. Partovian C, Ju R, Zhuang ZW, Martin KA, Simons M: Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Mol Cell 2008, 32(1):140-149.
38. Bass MD, Roach KA, Morgan MR, Mostafavi-Pour Z, Schoen T, Muramatsu T, Mayer U, Ballestrem C, Spatz JP, Humphries MJ: Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J Cell Biol 2007, 177(3):527-538.
39. Park H, Kim Y, Lim Y, Han I, Oh ES: Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 2002, 277(33):29730-29736.
40. Muramatsu T, Saitoh M, Ro Y, Uekusa T, Iwamura E, Ohta K, Kohno Y, Abiko Y, Shimono M: Inhibition of syndecan-1 expression and function in oral cancer cells. Oncol Rep 2008, 20(6):1353-1357.
41. Pacifici M, Shimo T, Gentili C, Kirsch T, Freeman TA, Enomoto-Iwamoto M, Iwamoto M, Koyama E: Syndecan-3: a cell-surface heparan sulfate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis. J Bone Miner Metab 2005, 23(3):191-199.
42. Carvallo L, Munoz R, Bustos F, Escobedo N, Carrasco H, Olivares G, Larrain J: Non-canonical Wnt signaling induces ubiquitination and degradation of Syndecan4. J Biol Chem 2010, 285(38):29546-29555.
43. Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, Lander AD, Korc M: Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer research 2001, 61(14):5562-5569.
44. Kurosawa N, Chen GY, Kadomatsu K, Ikematsu S, Sakuma S, Muramatsu T: Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth. Glycoconj J 2001, 18(6):499-507.
45. Liu B, Bell AW, Paranjpe S, Bowen WC, Khillan JS, Luo JH, Mars WM, Michalopoulos GK: Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice. Hepatology 2010, 52(3):1060-1067.
46. Strate I, Tessadori F, Bakkers J: Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling. Development 2015, 142(10):1767-1776.
47. Li Y, Miao L, Cai H, Ding J, Xiao Y, Yang J, Zhang D: The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncology letters 2013, 6(6):1565-1572.
48. Kawahara R, Granato DC, Carnielli CM, Cervigne NK, Oliveria CE, Martinez CA, Yokoo S, Fonseca FP, Lopes M, Santos-Silva AR et al: Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PLoS One 2014, 9(12):e115004.
49. Salmivirta M, Safaiyan F, Prydz K, Andresen MS, Aryan M, Kolset SO: Differentiation-associated modulation of heparan sulfate structure and function in CaCo-2 colon carcinoma cells. Glycobiology 1998, 8(10):1029-1036.
50. Horai T, Nakamura N, Tateishi R, Hattori S: Glycosaminoglycans in human lung cancer. Cancer 1981, 48(9):2016-2021.
51. Masuda H, Ozeki T, Takazono I, Tanaka Y: Analyses of glycosaminoglycans in human lung cancer. Biochemical medicine and metabolic biology 1987, 37(3):366-373.
52. Grigoriu BD, Depontieu F, Scherpereel A, Gourcerol D, Devos P, Ouatas T, Lafitte JJ, Copin MC, Tonnel AB, Lassalle P: Endocan expression and relationship with survival in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2006, 12(15):4575-4582.
53. Raman K, Kuberan B: Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Current chemical biology 2010, 4(1):20-31.
54. Zuo L, Zhang SM, Hu RL, Zhu HQ, Zhou Q, Gui SY, Wu Q, Wang Y: Correlation between expression and differentiation of endocan in colorectal cancer. World journal of gastroenterology : WJG 2008, 14(28):4562-4568.
55. Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK: The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In vivo 2008, 22(3):385-389.
56. Yip GW, Smollich M, Gotte M: Therapeutic value of glycosaminoglycans in cancer. Molecular cancer therapeutics 2006, 5(9):2139-2148.
57. Adany R, Heimer R, Caterson B, Sorrell JM, Iozzo RV: Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. The Journal of biological chemistry 1990, 265(19):11389-11396.
58. Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, Datto MB, Blobe GC: Type III TGF-beta receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia 2011, 13(8):758-770.
59. Cooney CA, Jousheghany F, Yao-Borengasser A, Phanavanh B, Gomes T, Kieber-Emmons AM, Siegel ER, Suva LJ, Ferrone S, Kieber-Emmons T et al: Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast cancer research : BCR 2011, 13(3):R58.
60. Vijayagopal P, Figueroa JE, Levine EA: Altered composition and increased endothelial cell proliferative activity of proteoglycans isolated from breast carcinoma. Journal of surgical oncology 1998, 68(4):250-254.
61. Fujii M, Yusa A, Yokoyama Y, Kokuryo T, Tsunoda N, Oda K, Nagino M, Ishimaru T, Shimoyama Y, Utsunomiya H et al: Cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on heparan sulfate glycosaminoglycan in mammary carcinomas--a novel proliferative biomarker for breast cancers with high malignancy. Glycoconjugate journal 2010, 27(7-9):661-672.
62. De Klerk DP, Lee DV, Human HJ: Glycosaminoglycans of human prostatic cancer. J Urol 1984, 131(5):1008-1012.
63. Theocharis AD, Vynios DH, Papageorgakopoulou N, Skandalis SS, Theocharis DA: Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int J Biochem Cell Biol 2003, 35(3):376-390.
64. Hishinuma M, Ohashi KI, Yamauchi N, Kashima T, Uozaki H, Ota S, Kodama T, Aburatani H, Fukayama M: Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology 2006, 49(5):479-486.
65. Masuda H, Ozeki T, Takazono I, Tanaka Y: Composition of glycosaminoglycans in human pancreatic cancer. Biochem Med Metab Biol 1989, 41(3):193-200.
66. Hrabar D, Aralica G, Gomercic M, Ljubicic N, Kruslin B, Tomas D: Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res, 30(7):2749-2753.
67. Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD, Korc M: The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. The Journal of clinical investigation 1998, 102(9):1662-1673.
68. Yang Y, Macleod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B et al: The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 2007, 110(6):2041-2048.
69. Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. The Journal of clinical investigation 2009, 119(6):1420-1428.
70. Mirandola L, Figueroa JA, Phan TT, Grizzi F, Kim M, Rahman RL, Jenkins MR, Cobos E, Jumper C, Alalawi R et al: Novel antigens in non-small cell lung cancer: SP17, AKAP4, and PTTG1 are potential immunotherapeutic targets. Oncotarget 2015, 6(5):2812-2826.
71. Margaretten NC, Witschi HR: Effects of hyperoxia on growth of experimental lung metastasis. Carcinogenesis 1988, 9(3):433-439.
72. Prokop A, Davidson JM: Nanovehicular intracellular delivery systems. J Pharm Sci 2008, 97(9):3518-3590.
73. Akram S, Mirza T, Aamir Mirza M, Qureshi M: Emerging Patterns in Clinico-pathological spectrum of Oral Cancers. Pak J Med Sci 2013, 29(3):783-787.
74. Chen IC, Chiang WF, Huang HH, Chen PF, Shen YY, Chiang HC: Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol Cancer 2014, 13:254.
75. Liu SA, Tsai WC, Wong YK, Lin JC, Poon CK, Chao SY, Hsiao YL, Chan MY, Cheng CS, Wang CC et al: Nutritional factors and survival of patients with oral cancer. Head Neck 2006, 28(11):998-1007.
76. Lin WJ, Jiang RS, Wu SH, Chen FJ, Liu SA: Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. J Oncol 2011, 2011:525976.
77. Ramadas K, Sankaranarayanan R, Jacob BJ, Thomas G, Somanathan T, Mahe C, Pandey M, Abraham E, Najeeb S, Mathew B et al: Interim results from a cluster randomized controlled oral cancer screening trial in Kerala, India. Oral Oncol 2003, 39(6):580-588.
78. Khusial PR, Vadla B, Krishnan H, Ramlall TF, Shen Y, Ichikawa H, Geng JG, Goldberg GS: Src activates Abl to augment Robo1 expression in order to promote tumor cell migration. Oncotarget 2010, 1(3):198-209.
79. Tang S, Morgan KG, Parker C, Ware JA: Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells. The Journal of biological chemistry 1997, 272(45):28704-28711.
80. Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nature reviews Cancer 2002, 2(8):563-572.
81. Mook OR, Frederiks WM, Van Noorden CJ: The role of gelatinases in colorectal cancer progression and metastasis. Biochimica et biophysica acta 2004, 1705(2):69-89.
82. Ma L, Weinberg RA: Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 2008, 24(9):448-456.
83. Kim SJ, Park JW, Yoon JS, Mok JO, Kim YJ, Park HK, Kim CH, Byun DW, Lee YJ, Jin SY et al: Increased expression of focal adhesion kinase in thyroid cancer: immunohistochemical study. J Korean Med Sci 2004, 19(5):710-715.
84. Sen B, Johnson FM: Regulation of SRC family kinases in human cancers. J Signal Transduct 2011, 2011:865819.
85. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J et al: Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 2010, 70(14):5706-5716.
86. Mayer EL, Krop IE: Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin Cancer Res 2010, 16(14):3526-3532.
87. Carelli S, Zadra G, Vaira V, Falleni M, Bottiglieri L, Nosotti M, Di Giulio AM, Gorio A, Bosari S: Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006, 53(3):263-271.
88. Summy JM, Gallick GE: Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 2006, 12(5):1398-1401.
89. Lee TY, Folkman J, Javaherian K: HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PloS one 2010, 5(4):e9945.
90. Hibino S, Shibuya M, Hoffman MP, Engbring JA, Hossain R, Mochizuki M, Kudoh S, Nomizu M, Kleinman HK: Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer research 2005, 65(22):10494-10501.
91. Hibino S, Shibuya M, Engbring JA, Mochizuki M, Nomizu M, Kleinman HK: Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer research 2004, 64(14):4810-4816.
92. Zhang L, Parry GC, Levin EG: Inhibition of tumor cell migration by LD22-4, an N-terminal fragment of 24-kDa FGF2, is mediated by Neuropilin 1. Cancer research 2013, 73(11):3316-3325.
93. Sulochana KN, Fan H, Jois S, Subramanian V, Sun F, Kini RM, Ge R: Peptides derived from human decorin leucine-rich repeat 5 inhibit angiogenesis. J Biol Chem 2005, 280(30):27935-27948.
94. Pietraszek K, Brezillon S, Perreau C, Malicka-Blaszkiewicz M, Maquart FX, Wegrowski Y: Lumican - derived peptides inhibit melanoma cell growth and migration. PLoS One 2013, 8(10):e76232.
95. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, Lekmine F, Tiruppathi C, Shilkaitis A, Bratescu L et al: A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 2011, 14(3):355-369.
96. Michod D, Yang JY, Chen J, Bonny C, Widmann C: A RasGAP-derived cell permeable peptide potently enhances genotoxin-induced cytotoxicity in tumor cells. Oncogene 2004, 23(55):8971-8978.
97. Barras D, Lorusso G, Ruegg C, Widmann C: Inhibition of cell migration and invasion mediated by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene 2014, 33(44):5163-5172.
98. Zvaifler NJ: Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Res Ther 2006, 8(3):210.
99. Kang Y, Massague J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004, 118(3):277-279.
100. Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, Long M, Kabbani W, Yu L, Zhang H et al: Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci U S A 2010, 107(6):2485-2490.
101. Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139(5):871-890.
102. Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007, 7(6):415-428.
103. Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK, Rocchi S, Mallavialle A, Galibert MD, Khammari A et al: The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 2012, 7(7):e40378.
104. O'Brien J, Wilson I, Orton T, Pognan F: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European journal of biochemistry / FEBS 2000, 267(17):5421-5426.
105. Holmes E, Engvall E: Determination of integrins on cells by cell adhesion to antibodies. Anal Biochem 1993, 214(1):100-105.
106. Gomes AM, Stelling MP, Pavao MS: Heparan sulfate and heparanase as modulators of breast cancer progression. Biomed Res Int 2013, 2013:852093.
107. van Zijl F, Krupitza G, Mikulits W: Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 2011, 728(1-2):23-34.
108. Park GB, Kim DJ, Kim YS, Lee HK, Kim CW, Hur DY: Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and beta-catenin expression and increases susceptibility to chemotherapeutic agents. Int J Oncol 2015, 46(1):185-194.
109. Chen J, Li Z, Zhang S, Zhang R, Dassarath M, Wu G: Effects of exogenous VEGF(165)b on invasion and migration of human lung adenocarcinoma A549 cells. J Huazhong Univ Sci Technolog Med Sci 2011, 31(5):619-624.
110. Jouve N, Bachelier R, Despoix N, Blin MG, Matinzadeh MK, Poitevin S, Aurrand-Lions M, Fallague K, Bardin N, Blot-Chabaud M et al: CD146 mediates VEGF-induced melanoma cell extravasation through FAK activation. Int J Cancer 2015, 137(1):50-60.
111. Laird AD, Li G, Moss KG, Blake RA, Broome MA, Cherrington JM, Mendel DB: Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Mol Cancer Ther 2003, 2(5):461-469.
112. Nieto MA: Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int J Dev Biol 2009, 53(8-10):1541-1547.
113. Zavadil J, Bottinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005, 24(37):5764-5774.
114. Satelli A, Li S: Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011, 68(18):3033-3046.
115. Sameni M, Dosescu J, Yamada KM, Sloane BF, Cavallo-Medved D: Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells. Mol Imaging 2008, 7(5):199-213.
116. Guo L, Zhang F, Cai Y, Liu T: Expression profiling of integrins in lung cancer cells. Pathol Res Pract 2009, 205(12):847-853.
117. Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ: Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med 2004, 33(2):79-86.
118. Kok SH, Hong CY, Lin SK, Lee JJ, Chiang CP, Kuo MY: Establishment and characterization of a tumorigenic cell line from areca quid and tobacco smoke-associated buccal carcinoma. Oral Oncol 2007, 43(7):639-647.
119. Tu HP, Fu E, Chen YT, Wu MH, Cheng LC, Yang SF: Expression of p21 and p53 in rat gingival and human oral epithelial cells after cyclosporine A treatment. J Periodontal Res 2008, 43(1):32-39.
120. Rheinwald JG, Beckett MA: Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell 1980, 22(2 Pt 2):629-632.
121. Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavao MS, Tzanakakis GN, Karamanos NK: Glycosaminoglycans: key players in cancer cell biology and treatment. The FEBS journal 2012, 279(7):1177-1197.
122. Mager I, Eiriksdottir E, Langel K, El Andaloussi S, Langel U: Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochim Biophys Acta 2010, 1798(3):338-343.
123. Barras D, Chevalier N, Zoete V, Dempsey R, Lapouge K, Olayioye MA, Michielin O, Widmann C: A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide. J Biol Chem 2014, 289(34):23701-23711.
124. Walker S, Ullman O, Stultz CM: Using intramolecular disulfide bonds in tau protein to deduce structural features of aggregation-resistant conformations. J Biol Chem 2012, 287(12):9591-9600.
125. Cardin AD, Weintraub HJ: Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989, 9(1):21-32.
126. Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li AS, Reid MB, Li YP: Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol 2005, 289(5):C1179-1187.
127. Wu PL, Lee SC, Chuang CC, Mori S, Akakura N, Wu WG, Takada Y: Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem 2006, 281(12):7937-7945.
128. Yu SJ, Liao EC, Sheu ML, Chang DT, Tsai JJ: Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation. PLoS One 2015, 10(3):e0121393.
129. Azijli K, Yuvaraj S, Peppelenbosch MP, Wurdinger T, Dekker H, Joore J, van Dijk E, Quax WJ, Peters GJ, de Jong S et al: Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells. J Cell Sci 2012, 125(Pt 19):4651-4661.
130. Liu G, Meng X, Jin Y, Bai J, Zhao Y, Cui X, Chen F, Fu S: Inhibitory role of focal adhesion kinase on anoikis in the lung cancer cell A549. Cell Biol Int 2008, 32(6):663-670.
131. Ocak S, Chen H, Callison C, Gonzalez AL, Massion PP: Expression of focal adhesion kinase in small-cell lung carcinoma. Cancer 2012, 118(5):1293-1301.
132. Kim CH, Ko AR, Lee SY, Jeon HM, Kim SM, Park HG, Han SI, Kang HS: Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. Int J Oncol 2010, 36(1):117-124.
133. Huttenlocher A, Horwitz AR: Integrins in cell migration. Cold Spring Harb Perspect Biol 2011, 3(9):a005074.
134. Alexandrova AY: Evolution of cell interactions with extracellular matrix during carcinogenesis. Biochemistry (Mosc) 2008, 73(7):733-741.
135. Altemeier WA, Schlesinger SY, Buell CA, Brauer R, Rapraeger AC, Parks WC, Chen P: Transmembrane and extracellular domains of syndecan-1 have distinct functions in regulating lung epithelial migration and adhesion. J Biol Chem 2012, 287(42):34927-34935.
136. Fears CY, Gladson CL, Woods A: Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 2006, 281(21):14533-14536.
137. Beauvais DM, Burbach BJ, Rapraeger AC: The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol 2004, 167(1):171-181.
138. Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD: Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010, 115(12):2449-2457.
139. Huveneers S, Truong H, Fassler R, Sonnenberg A, Danen EH: Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion redistribution and contractile shape. J Cell Sci 2008, 121(Pt 15):2452-2462.
140. Larsen M, Artym VV, Green JA, Yamada KM: The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 2006, 18(5):463-471.
141. Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D, Park C: Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 2007, 67(2):659-664.
142. Nakamura A, Osonoi T, Terauchi Y: Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diabetes Investig 2010, 1(5):208-211.
143. Pikas DS, Li JP, Vlodavsky I, Lindahl U: Substrate specificity of heparanases from human hepatoma and platelets. The Journal of biological chemistry 1998, 273(30):18770-18777.
144. Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M: Significance of heparanase in cancer and inflammation. Cancer microenvironment : official journal of the International Cancer Microenvironment Society 2012, 5(2):115-132.
145. Werb Z: ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997, 91(4):439-442.
146. Carlin SM, Resink TJ, Tamm M, Roth M: Urokinase signal transduction and its role in cell migration. FASEB J 2005, 19(2):195-202.
147. Yu Q, Stamenkovic I: Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes & development 1999, 13(1):35-48.
148. Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K: TGF-beta-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 2012, 151(2):205-216.
149. Xiao D, He J: Epithelial mesenchymal transition and lung cancer. Journal of thoracic disease 2010, 2(3):154-159.
150. Hollestelle A, Peeters JK, Smid M, Timmermans M, Verhoog LC, Westenend PJ, Heine AA, Chan A, Sieuwerts AM, Wiemer EA et al: Loss of E-cadherin is not a necessity for epithelial to mesenchymal transition in human breast cancer. Breast cancer research and treatment 2013, 138(1):47-57.
151. Avizienyte E, Frame MC: Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 2005, 17(5):542-547.
152. Behr TM, Goldenberg DM, Becker W: Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. European journal of nuclear medicine 1998, 25(2):201-212.
153. O'Byrne KJ, Thomas AL, Sharma RA, DeCatris M, Shields F, Beare S, Steward WP: A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer 2002, 87(1):15-20.
154. Duncan R: Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006, 6(9):688-701.
155. Koren E, Torchilin VP: Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 2012, 18(7):385-393.
156. Torchilin VP: Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 2008, 90(5):604-610.
157. Koren E, Apte A, Jani A, Torchilin VP: Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 2012, 160(2):264-273.
158. Biswas S, Dodwadkar NS, Deshpande PP, Parab S, Torchilin VP: Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 2013, 84(3):517-525.
159. Lu RM, Chen MS, Chang DK, Chiu CY, Lin WC, Yan SL, Wang YP, Kuo YS, Yeh CY, Lo A et al: Targeted drug delivery systems mediated by a novel Peptide in breast cancer therapy and imaging. PLoS One 2013, 8(6):e66128.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *