帳號:guest(18.116.118.244)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊易閎
作者(外文):Yang, Yi Hung
論文名稱(中文):提升微藻油脂萃取效率以製備生質柴油
論文名稱(外文):Enhancement of lipid extraction from microalgae for biodiesel precursor.
指導教授(中文):談駿嵩
指導教授(外文):Tan, Chung Sung
口試委員(中文):王竹方
蔣本基
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032558
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:微藻二氧化碳膨脹溶液生質柴油油脂萃取
外文關鍵詞:microalgaeCO2expanded liquidbiodiesellipid extraction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:162
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用國立成功大學以開放式大規模培養之學名為Chlorella vulgaris的微藻作為生質原物料,進行生質柴油前驅油脂之萃取。研究中以超臨界CO2前處理技術、萃取溶劑篩選以及萃取操作條件最適化等三個方向以增進微藻油脂萃取製程之效率。
結果顯示超臨界CO2前處理於壓力為20.7 MPa下,不論操作溫度高或低皆無法有效提升萃取產率。經萃取溶劑篩選之結果顯示CO2膨脹甲醇(CO2-expanded methanol)為最有效之微藻油脂萃取溶劑,接著再以實驗設計-反應曲面法進行CO2膨脹甲醇萃取微藻油脂操作條件最適化之探討。CO2膨脹甲醇之最適化操作條件壓力為5.5 MPa、溫度為358 K、CO2流速為3 ml/min及甲醇流速為1 ml/min。於最適化操作條件下,以CO2膨脹甲醇萃取未經前處理之微藻可以得到高達84.8%的萃取產率。再以實驗結果搭配Aspen Plus計算比較CO2膨脹甲醇與丙烷膨脹甲醇(C3H8-expanded methanol)作為萃取溶劑時於生質柴油製程中所需能耗之差異。結果顯示CO2膨脹甲醇以及丙烷膨脹甲醇兩者於後續轉酯化製程所需之能耗並無太大差異;然而,當使用CO2膨脹甲醇作為萃取劑時,萃取過程中所需之能耗僅為丙烷膨脹甲醇所需之2/5,又因為CO2膨脹甲醇被視為一綠色溶劑而且操作上較丙烷膨脹甲醇安全,在安全及綠色製程之考量下,以CO2膨脹甲醇萃取微藻中油脂可視為一極具發展潛力之綠色萃取製程。
The purpose of this study is to enhance the efficiency of lipid extraction from Chlorella vulgaris for biodiesel precursor by supercritical CO2 (scCO2) pretreatment, CO2-expaneded alcohol extraction and optimization of extraction.
Supercritical CO2 pretreatment was used to disrupt the cell wall of microalgae to enhance the extracted lipid yield; however, scCO2 pretreatment was ineffective when it was operated at a temperature range of 313 to 353 K and at a high pressure of 20.3 MPa. The CO2-expanded methanol (CXM) was a superior solvent to methanol, ethanol, pressurized methanol and ethanol, and CO2-expanded ethanol for lipid extraction from the microalga Chlorella vulgaris (a total lipid content of 20.7% of the dried biomass was determined by Soxhlet extraction with methanol at 373 K for 96 h) in continuous mode. The effects of operation variables, such as temperature, pressure and CO2 flow rate, on extraction performance were examined using response surface and contour plot methodologies. The optimal operating conditions were a pressure of 5.5 MPa, a temperature of 358 K, a methanol flow rate of 1 mL/min and a CO2 flow rate of 3.0 mL/min, providing an extracted lipid yield of 84.8 wt% over an extraction period of 30 min. Compared with PM, CXM was safer and more energy efficient for lipid extraction from Chlorella vulgaris.
摘要 1
第一章 緒論 7
1-1 前言 7
第二章 文獻回顧 9
2-1 以微藻作為生質能源原物料 9
2-2 微藻前處理技術 12
2-2.1 物理性前處理 12
2-2.2 化學性前處理 13
2-2.3 生物性前處理 14
2-2.4 超臨界CO2前處理 14
2-3 微藻萃取技術與高壓萃取技術應用 17
2-4 生質柴油製備 23
2-4.1 轉酯化反應 24
2-4.2 超臨界轉酯化法 27
第三章 實驗裝置與操作流程 30
3-1 實驗流程操作說明 30
3-1.1 濕藻體乾燥 31
3-1.2 索式萃取 31
3-1.3 超臨界CO2前處理 33
3-1.4 連續式萃取微藻油脂 34
3-1.5 萃取產物分析 35
3-2 實驗儀器 36
3-3 實驗藥品 37
Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., Lim J. K. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15, 584-593.
Alinia, R., Zabihi, S., Esmaeilzadeh, F., Kalajahi, J. F. 2010. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosys. Eng. 107, 61-66.
Anastopoulos, G., Zannikou, Y., Stournas S., Kalligeros, S. 2009. Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies. 2, 362-376.
Andrich, G., Nesti, U., Venturi, F., Zinnai, A., Fiorentini, R. 2005. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur. J. Lipid Sci. Technol. 107, 381–386.
Araujo, G.S., Matos, L.J.B.L., Fernandes, J.O., Cartaxo, S.J.M., Gonçalves, L.R.B., Fernandes, F.A.N., Farias, W.R.L. 2013. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason. Sonochem. 20, 95-98.
Bahadar, A., Khan, M.B. 2013. Progress in energy from microalgae: a review. Renew. Sust. Energ. Rev. 27, 128-148
Balasubramanian, S., Allen, J.D., Kanitkar, A., Boldor, D. 2011. Oil extraction from Scenedesmus obliquus using a continuous microwave system-design, optimization, and quality characterization. Bioresour. Technol. 102, 3396–3403.
Billaud, F., Dominguez, V., Broutin, P., Busson, C. 1995. Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil. J. Am. Oil Chem. Soc. 72, 1149-1154.
Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911-917.
Boyd, A.R., Champagne, P., Mcginn, P.J., Macdougall, K.M., Melanson, J.E., Jessop, P.G. 2012. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bioresour. Technol. 118, 628-632.
Cao, P., Tremblay, A.Y., Dubé, M.A. 2009. Kinetics of canola oil transesterification in a membrane reactor. Ind. Eng. Chem. Res. 48, 2533-2541.
Cao, W., Han, H., Zhang, J. 2005. Preparation o biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel. 84, 347-351
Cha, K.H., Kang, S.W., Kim, C.Y., Um, B. H., Na, Y.R., Pan, C.H. 2010 Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agric. Food. Chem. 58, 4756-4761.
Chen, K.T., Cheng, C.H., Wu, Y.H., Lu, W.C., Lin, Y.H., Lee, H.T. 2013. Continuous lipid extraction of microalgae using high-pressure carbon dioxide. Bioresour. Technol. 146, 23-26.
Cho, S.C., Choi, W.Y., Oh, S.H., Lee, C.G., Seo, Y.C., Kim, J.S., Song, C.H., Kim, G.V., Lee, S.Y., Kang, D.H., Lee, H.Y. 2012. Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization Process. J. Biomed. Biotechnol. 2012, 6.
Coorens, H.G.A., Peters, C.J., de Swaan, A.J. 1988 Phase equilibria in binary mixtures of propane and tripalmitin. Fluid Phase Equilibria. 40, 135–51
Couto, R.M., Simões, P.C., Reis, A., Da Silva, T.L., Martins, V.H., Sánchez-Vicente, Y. 2010. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng. Life Sci. 10, 158–164.
Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., Cintas, P. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem. 15, 898–902.
del Valle, J.M., De la Fuente, J.C., Cardarelli, D.A. 2005. Contributions to supercritical extraction of vegetable substrates in Latin America. J. Food Eng. 67, 35-57.
Encinar, J.M., Gonzalez, J.F., Rodriguez, J.J., Tejedor, A. 2002. Biodiesel fuels from vegetable oils: transesterification of Cynara Cardunculus L. oils with ethanol. Energ. Fuel. 16, 443-450.
Fajardo, A.R., Cerdan, L.E., Medina, A.R., Fernández, F.G.A., Moreno, P.A.G., Grima, E.M. 2007. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur. J. Lipid Sci. Technol. 109, 120–126.
Gao, M.; Xu, F.; Li, S.; Ji, X.; Chen, S., Zhang, D. 2010. Effect of sc-CO2 pretreatment in increasing rice straw biomass conversion. Biosyst. Eng. 106, 470-475.
Geciova, J., Bury, D., Jelen, P. 2002. Methods for disruption of microbial cells for potential use in the dairy industry-a review. Int. Dairy J. 12, 541-553.
Grierson, S., Strezov, V., Bray, S., Mummacari, R., Danh, L.T., Foster, N. 2011. Assessment of bio-oil extraction from Tetraselmis chui microalgae comparing supercritical CO2, solvent extraction, and thermal processing. Energ. Fuel. 26, 248-255.
Grimi, N., Dubois, A., Marchal, L., Jubeau, S., Lebovka, N. I., Vorobiev, E. 2014. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour. Technol. 153, 254–259.
Halim, R., Danquah, M.K., Webley, P.A. 2012. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol. Adv. 30, 709-732.
Halim, R., Gladman, B., Danquah, M.K., Webley, P.A. 2011. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 102, 178-185
Han, H., Cao, W., Zhang, J. 2005. Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochem. 40, 3148-3151.
Harun, R., Danquah, M.K. 2011. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 46, 304–309.
Heldebrant, D.J., Li, X., Eckert, C.A., Liotta, C.L., Jessop, P.G. 2005. Green chemistry reversible nonpolar-to-polar solvent. Nature. 436, 1102-1102.
Hernández, D., Solana, M., Riaño, B., García-González, M.C., Bertucco, A. 2014. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour. Technol. 170, 370–378.
Herrero, M., Castro-Puyana, M., Mendiola, J.A. 2013. Compressed fluids for the extraction of bioactive compounds. TrAc-Trend. Anal. Chem. 43, 67-83.
Hodge, J.E. 1953. Chemistry of browning reaction in model system. Agric. Food. Chem. 1, 928-943.
Hsin, C.W., Klinthong, W., Yang, Y.H., Tan, C.S. 2015 Continuous extraction of lipids from Schizochytrium sp. by CO2-expanded ethanol. Bioresour. Technol. 189, 162-168.
Huang, Y., Hong, A., Zhang, D., Li, L. 2014. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris. Environ. Technol. 35, 931–937.
Jessop, P.G., Subramaniam, B. 2007. Gas-expanded liquids. Chem. Rev. 107, 2666-2694.
Jessop, P. G. 2011. Searching for green solvents. Green Chem. 13, 1391-1398.
Jesus, A.A., Almeida, L.C., Silva, E.A., Filho, L.C., Egues, S.M.S., Franceshi, E., Fortuny, M., Santos, A.F., Araujo, J., Sousa, E.M.B.D., Dariva, C. 2013. Extraction of palm oil using propane, ethanol and its mixtures as compressed solvent. J. Supercrit. Fluids. 81, 245-253.
Kim, K.H., Hong, J. 2001. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour. Technol. 77, 139-144.
Kusdiana, D., Saka, S. 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol. 91, 289-295.
Kusdiana, D., Saka, S. 2004. Two-step preparation for catalyst-free biodiesel fuel production. Appl. Biochem. Biotech. 115, 781-791.
Li, Y., Naghdi, F.G., Garg, S., Catalina, T., Adarme-Vega, T.C., Thurecht, K.J., Ghafor, W.A., Tannock, S., Schenk, P.M. 2014. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb. Cell. Fact. 13, 14–22.
Lin, I.H., Tan, C.S. 2008. Measurement of diffusion coefficients of p-chloronibtrobenzene in CO2-expanded methanol. J. Supercrit. Fluids. 46, 112-117.
Lucas, K. 1981. Pressure dependence of the viscosity of liquids - a simple estimate. Chem. Ing. Tech. 53, 959-960.
Ma, Y.A., Cheng, Y.M., Huang, J.W., Jen, J.F., Huang, Y.S. Yu, C.C. 2014. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioproc. Biosyst. Eng. 37, 1543–1549.
Ma, Z., Shang, Z.Y., Wang, E.J., Xu, J.C., Xu, Q.Q., Yin, J.Z. 2012. Biodiesel production via transesterification of soybean oil using acid catalyst in CO2 expanded methanol liquids. Ind. Eng. Chem. Res. 51, 12199-12204.
Makareviciene, V., Lebedevas S., Rapalis, P., Gumbyte, M., Skorupskaite, V., Zaglinskis J. 2014. Performance and emission characteristics of diesel fuel containing microalgae oil methyl esters, Fuel. 120, 233-239.
Makareviciene, V., Skorupskaite, V., Andruleviciute, V. 2013. Biodiesel fuel from microalgae-promising alternative fuel for the future: a review. Rev. Environ. Sci Bio. 12, 119-130.
McMillan, J.R., Watson, I.A. Jaafar, M.A.W. 2013. Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energ. 103, 128–134.
Miao, X., Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846.
Mouahid, A., Crampon, C., Toudji, S.-A.A., Badens, E. 2013. Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling. The J. Supercrit. Fluid. 77, 7-16.
Nagle, N., Lemke, P. 1990. Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol. 24, 355–361.
Narayanaswamy, N., Faik, A., Goetz D. J. Gu, T. 2011 Supercritical carbon dioxide petreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour. Technol. 102, 6995-7000.
Park, J.Y., Oh, Y.K., Lee, J.S., Lee, K., Jeong, M.J. Choi, S.A. 2014. Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris. Bioresour. Technol. 153, 408–412.
Patil, P.D., Gude, V.G., Mannarswamy, A., Cooke, P., Nirmalakhandan, N., Lammers, P., Deng, S. 2012. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel. 97, 822-831.
Paudel, A., Jessop, M.J., Stubbins, S.H., Champagne, P., Jessop, P.G., 2015. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2. Bioresour. Technol. 184, 286-290.
Phan, D.T., Tan, C.S. 2014. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide. Bioresour. Technol. 167, 192-197.
Pieber, S., Schober, S., Mittelbach, M. 2012. Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. 47, 474-482.
Ranjan, A., Patil, C. Moholkar, V.S. 2010. Mechanistic assessment of microalgal lipid extraction. Ind. Eng. Chem. Res. 49, 2979–2985.
Reddy, H. K., Muppaneni, T., Patil, P. D., Ponnusamy, S., Cooke, P., Schaub, T., Deng, S. 2014. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel. 115, 720-726.
Reverchon, E. 1997. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluid. 10, 1-37.
Reverchon, E., De Marco, I. 2006. Supercritical fluid extraction and fractionation of natural matter. J. of Supercrit. Fluid. 38, 146-166.
Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L. 1996. Accelerated solvent extraction: a technique for sample preparation. Anal. Chem. 68, 1033-1039.
Rincon, J., Canizares, P., Garcia, M.T., Gracia, I. 2003. Regeneration of used lubricant oil by propane extraction. Ind. Eng. Chem. Res. 42, 4867-4873.
Rodriguez-Meizoso, I., Jaime, L., Santoyo, S., Cifuentes, A., Reina, G.G.B., Senorans, F.J., Ibanez, E. 2008. Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food. Chem. 56, 3517-3523.
Sajilata, M., Singhal, R.S., Kamat, M.Y. 2008. Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J. Food Eng. 84, 321–326.
Saka, S., Isayama, Y. 2009. A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel. 88, 1307-1313.
Saka, S., Kusdiana, D. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel. 80, 225-231.
Samarasinghe, N., Fernando, S., Lacey, R., Faulkner, W.B. 2012. Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew. Energ. 48, 300-308.
Samori, C., Lopez Barreiro, D., Vet, R., Pezzolesi, L., Brilman, D.W.F., Galletti, P., Tagliavini, E. 2013. Effective lipid extraction from algae cultures using switchable solvents. Green Chem. 15, 353-356.
Samorì, C., Torri, C., Samorì, G., Fabbri, D., Galletti, P., Guerrini, F. 2010. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour. Technol. 101, 3274–3279.
Santos, A.L.F.; Kawase, K.Y.F. Coelho, G.L.V. 2011. Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. J. Supercrit. Fluid. 56, 277-282.
Schwab, A.W., Bagby, M.O., Freedman, B. 1987. Preparation and properties of diesel fuels from vegetable oils. Fuel. 66, 1372-1378.
Sih, R., Armenti, M., Mammucari, R., Dehghani, F., Foster, N.R. 2007. Viscosity measurements on gas expanded liquid systems—methanol and carbon dioxide. J. Supercrit. Fluids. 41, 148-157.
Sih, R., Armenti, M., Mammucari, R., Dehghani, F., Foster, N.R. 2008. Viscosity measurements on saturated gas-expanded liquid systems-ethanol and carbon dioxide. J. Supercrit. Fluids. 43, 460-468.
Silva, C., Soliman, E., Cameron, G., Fabiano, L. A., Seider, W. D. 2014. Commercial-scale biodiesel production from algae. Ind. Eng. Chem. Res. 53, 5311-5324.
Singh, A., Nigam, P.S., Murphy, J.D. 2011. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol. 102, 10-16.
Smith, B., Greenwell, H.C., Whiting, A. 2009. Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels. Energ. Environ. Sci. 2, 262-271.
Srinivasan, N., Ju, L.-K. 2010. Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresour. Technol. 101, 9785-9791.
Srinivasan, N., Ju, L.-K. 2012. Statistical optimization of operating conditions for supercritical carbon dioxide-based pretreatment of guayule bagasse. Biomass Bioenerg. 47, 451-458.
Srivastava, A., Prasad, R. 2000. Triglycerides-based diesel fuels. Renew. Sust. Energ. Rev. 4, 111-133.
Steriti, A., Rossi, R., Concas, A., Cao, G. 2014. A novel cell disruption technique to enhance lipid extraction from microalgae. Bioresource technology 164, 70-77
Suarsini, E., Subandi, S. 2011. Utilization ultrasonic to increase the efficiency of oil extraction for microalgae indigenous isolates from pond gresik, east java. In: Proceedings of the 2011 IEEE first conference on clean energy and technology (CET). 275–279.
Taher, H., Al-Zuhair, S., Al-Marzouqi, A.H., Haik, Y., Farid, M., Tariq, S. 2014. Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. J. Supercrit. Fluids 86, 57–66.
Umdu, E.S., Tuncer, M., Seker, E. 2009. Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour. Technol. 100, 2828-2831.
Warabi, Y., Kusdiana, D., Saka, S. 2004. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour. Technol. 91, 283-287.
Yusoff, M.F.M., Xu, X., Guo, Z. 2014. Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production Requirements. J. Am. Oil Chem. Soc. 91, 525-531.
Zheng, H., Yin, J., Zhen, G., Haung, H., Ji, X., Dou, C. 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymartic lysis, and microwave. Appl. Biochem. Biotech. 164, 1215–1224.
Zheng, Y., Lin, H.-M., Tsao, G.T. 1998. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol. Progr. 14, 890-896.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *