帳號:guest(34.201.122.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈翰雲
作者(外文):Shen, Han Yun
論文名稱(中文):誘導掌性高分子與嵌段共聚物之掌性 控制與自組裝行為研究
論文名稱(外文):Controlled Handedness in Self-Assembly of Induced Chiral Homopolymers and Block copolymers
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong Ming
口試委員(中文):李明家
蔣酉旺
蔡敬誠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032538
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:80
中文關鍵詞:掌性
外文關鍵詞:chiral
相關次數:
  • 推薦推薦:0
  • 點閱點閱:123
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在自然界中,螺旋形態可能是最迷人的自組裝結構之一。本實驗擬利用掌性分子的非共價鍵自組裝行為來探討在不同層級之螺旋形態間的相依關係。先前的研究證實具有立體規則的乙烯基聚合物,聚(2-乙烯基吡啶) (poly(2-vinyl pyridine),P2VP)可利用掌性摻雜物之錯化呈現誘導圓二色特性(Induced Circular Dichroism, ICD)。此外ICD的強弱變化將取決於P2VP的同排立體規則度。本研究目的為探討聚(2-乙烯基吡啶)(iP2VP)與L-和D-扁桃酸(Mandelic Acids)混摻後之自組裝行為。首先在薄膜狀態下將iP2VP與掌性酸混合,由對應之ICD訊號顯示螺旋構型的形成可利用扁桃酸與吡啶環之結合來實現。同時發現具有扁桃酸之iP2VP於薄膜狀態結晶後,於偏振光顯微鏡(Polarized Light Microscopy, PLM)下呈現帶狀球晶型態推論其旋轉具有特定的左右旋性,其成因乃是結晶層板上下表面應力不平衡所致,進而導致結晶層板的扭轉最重要的是將促使其旋轉具有特定的左右旋性。換言之,可利用加入的掌性扁桃酸來控制iP2VP結晶層板成長之旋性。結果顯示此種誘導掌性之效應可由分子層級開始,傳遞到相層級。
同時本研究亦進行此類具有ICD之嵌段共聚物的自組裝行為。探討,以期瞭解同掌性傳遞於微相分離的實際效應。首先合成出柱狀聚苯乙烯-聚(2-乙烯基吡啶)(PS-b-iP2VP)嵌段共聚物,以進行類似前述ICD效應之探討。由穿透式電子顯微鏡(Transmission Electron Microscopy ,TEM)與小角度X射線散射(Small-Angle X-ray Scattering ,SAXS)實驗結果證實PS-iP2VP與扁桃酸結合後可自組裝形成有序螺旋結構相。
Among self-assembled architectures, helical morphology is probably the most fascinating texture in nature. By introducing the chirality into synthetic molecules, helical textures on different length scales can be obtained by self-assembling through interplay of secondary interactions (i.e., non-covalent bonding forces). Our previous studies demonstrated that induced circular dichroism (ICD) of stereoregular vinyl polymers, poly(2-vinyl pyridine)s (P2VPs) can be driven by association of chiral dopant, suggesting the formation of helical polymer chain with exclusive handedness. The ICD via the association with chiral acids strongly depends upon the isotacticity of the P2VPs. In this study, we aim to examine the self-assembled behaviors of isotactic poly(2-vinyl pyridine) (iP2VP) with L- and D-mandelic acids (MA) as chiral dopants. For the iP2VP complexing with the chiral acids in the film state, mirror image of the corresponding ICD indicates that the formation of preferential helical conformation can be achieved by complexation of chiral dopants with pyridine. Most interestingly, bands spherulites (the presence of concentric rings or extinction bands under polarizes light microscope (PLM) observations) can be formed in the film state by crystallization of the iP2VPs with chiral dopants, providing a model system for the examination of the chirality transfer from conformational chirality to hierarchical chirality. Controlled handedness of crystalline lamellae in the banded spherulites can be found in crystallized iP2VP with chiral MA. Owing to the crystalline lamellar twisting, resulting from imbalanced stresses at the opposite folding surfaces, the preferential sense of the lamellar twisting can be determined using polarized light microscopy (PLM). As a result, homochiral evolution from molecular chirality to hierarchical chirality can be found in the crystallized iP2VP with ICD.
In contrast to the homochiral evolution in crystallized iP2VP, we are also interested in the chirality transfer of self-assembled block copolymers (BCPs). A series of polystyrene-b-poly(isotactic 2-vinyl pyridine) (PS-iP2VP) with cylinder-forming phase are synthesized for the examination of the homochiral evolution on BCP self-assembly through the ICD. Helix-like transmission electron microscopy (TEM) projections can be observed in the PS-iP2VP complexing with the chiral dopants (i.e., MA). On the basis of small-angle X-ray scattering experiments, those helices can be found to appear as hexagonally packed lattice. As a result, helical phase is identified for the self-assembled PS-iP2VP/R- or S-MA, suggesting the chirality effect on the self-assembly of the PS-iP2VP/R- or S-MA. To further examine the homochiral evolution, the ICD behaviors of the PS-iP2VP driven by the introduced enantiomeric MA are examined by CD, and similar mirror-imaged results can be found. With the examination of the handedness of forming helical phase, a methodology for the examination of the homochiral evolution in the BCPs with ICD is suggested.
Contents
Abstract…………………………………………………………………...I
Contents………………………………………………………………....III
List of Table …...………………………..……………………………....VI
List of Schemes………………………………………………………...VII
List of Figures………………………………………………………....VIII
Chapter 1 Introduction…………………………………………………1
1-1Chirality……………………………………………………………….1
1-2 Induced Circular Dichroism.................................................................3
1-3Stereoregular vinyl polymers…...........................................................5
1-4ICD onStereoregular vinyl polymers................................................10
1-5Conjugated Coupling Rule and Exciton Chirality Method…………11
1-6Self-Assembly and Supramolecular Chemistry.................................14
1-7 Chiral Effect on Self-Assembly..........................................................23
1-8Banded Spherulitic Morphologies…………………………………..31
1-9Chiral Block Copolymers………………..………………………….36
Chapter 2 Objectives..............................................................................38
Chapter 3 Materials and Experimental Details...................................40
3-1 Materials.............................................................................................40
3-1.1 Synthesis of poly(2-vinyl pyridine)s………………………….40
3-1.2 Synthesis of polystyrene-co-poly(2-vinyl pyridine)s……….… 41
3-2 Preparation of Polymer samples.........................................................41
3-2.1 Preparation of polymer solution....……………………………41
3-2.2 Preparation of polymer thin-film samples……………………41
3-2.3 Preparation of polymer bulk samples…………………………42
3-3Characterization and Instruments......................................................42
3-3.1 Circular dichroism spectroscopy (CD)......................................42
3-3.2 Polarized optical microscopy (POM)........................................42
3-3.3 Differential Scanning Calorimetry (DSC).................................42
3-3.4 Small-angle X-ray (SAXS).......................................................43
3-3.5 Transmission Electron Microscopy (TEM)...............................43
3-3.6 Thermogravimetric Analysis (TGA)………………………….43
Chapter 4 Results and Discussion.........................................................44
4-1 Thermal Properties of iP2VP…………………….............................44
4-2 Crystallization of iP2VP……………………………………………47
4-2.1 Crystallization Behaviors of iP2VP in Thin Film……….……47
4-2.2 Formation of Banded Spherulites in iP2VP...………….……..49
4-3 Induced Circular Dichroism of iP2VP……………………………...51
4-3.1 Molecular Chirality Examined by CD……………………….52
4-3.2 ConformationalChirality Examined by CD………...…..……54
4-3.3 Induced Circular Dichroism in Solid State…………………...56
4-3.4 Homochiral Evolution in Crystallized iP2VP………………...61
4-4 Homchiral Evolution in Self-Assembled iP2VP-containing BCPs...62
4-4.1 Thermal Properties of PS-iP2VP……………………………..63
4-4.2 ConformationalChirality Examined by CD …………………65
4-4.3Self-Assembly of iP2VP-containing BCPs………………..…66
4-4.4 Helical Phase from Self-Assembly of iP2VP-containing BCPs
With ICD……………………………………………………………72
Chapter 5 Conclusions...........................................................................74
Chapter 6Future Work.........................................................................76
Chapter 7 References.............................................................................77
Chapter 7
Reference
[1] http://en.wikipedia.org/wiki/Chirality_(chemistry)
[2]Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J Am ChemSoc1989, 111, 8850.
[3]Yashima, E.; Maeda, K.; Furusho, Y. Acc Chem Res 2008, 41, 1166.
[4] Yashima, E.; Matsushima, T.; Okamoto, Y. J Am Chem Soc 1995, 117, 11596.
[5] Yashima, E.; Maeda, K. Macromolecules2008, 41, 3.
[6] Green, M. M.; Cheon, K. S.; Yang, S. Y.; Park, J. W.; Swansburg, S.; Liu, W. Acc Chem Res2001, 34, 672.
[7] Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708.
[8]Pino, P.; Ciradelli, F.; Lorenzi, G. Makromol. Chem. 1963, 61, 207.
[9]Pino, P.; Lorenzi, G. P. J. Am. Chem. Soc. 1960, 82, 4745.
[10] Pino, P.; Lorenzi, G. P.; Lardicci, L. Chim. Ind. (Milan) 1960, 42, 712.
[11] Pino, P.; Ciardelli, F.; Motagnoli, G.; Pieroni, O. J. Polym. Sci., Part B: Polym. Lett. 1967, 5, 307.
[12] Okamoto, Y.; Suzuki, K.; Ohta, K.; Hatada, K.; Yuki, H. J. Am. Chem. Soc. 1979, 101, 4763.
[13] Kizirian, J.-C. Chem. Rev. 2008, 108, 140
[14] Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013.
[15] Oriz, L. J.; Khan, I. M. Macromolecules 1998, 31, 5927.
[16] Khan, I. M.; Hogen-Esch, T. E. Macromolecules 1987, 20, 2335.
[17] Mathis, C.; Hogen-Esch, T. E., J. Am Chem. Soc., 1982, 104, 634.
[18] Habaue, S.; Ajiro, H.; Okamoto, Y. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4088.
[19] Ho, R.-M..et al.Chem. Commun., 2012, 48, 3668
[20] Harada N, Nakanishi K. Circular Dichroic Spectroscopy. Exciton Coupling in Organic Stereochemistry. University Science Books,1983.
[21] Berova N, Nakanishi K, Woody RW. Circular Dichroism: Principles and Applications.Wiley-VCH, 2000.
[22] Gawronski J. Determination of absolute and relative configuration by chiroptical methods. In: Houben-Weyl, Methods of Organic Chemistry, 1995,21, 499.
[23] Anne Fischbeck, Nana Bartke, and Hans-Ulrich Humpf, Monatshefte fur Chemie, 2005, 136, 397.
[24] Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H. P. J Am ChemSoc1995, 117, 4181.
[25] Whitesides, G. M.; Grzybowski, B. Science, 2002, 295, 2418.
[26] Whitesides, G. M.;Boncheva,M. Proc. Nat.l Acad. Sc.i USA2002, 99, 4769.
[27] Petsko, G. A.; Ringe, D. Protein Structure and Function. London: New Science Press Ltd, 2004. pp. 2-46.
[28] Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature1988, 334, 598.
[29] Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem.1990, 41, 525.
[30] Bates, F. S.; Fredrickson, G. H. Phys. Today1999, 52, 32.
[31] Shen, H.; Eisenberg, A. J. Phys. Chem. B1999, 103, 9473.
[32] Discher, D. E.; Eisenberg, A. Science2002, 297, 967.
[33] GianPieroSpada, GiovanniGottarelli, Stefano Lena, StefanoMasiero, Silvia Pieraccini, Chirality, 2008, 20, 471.
[34] Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc.1985, 107, 509.
[35] Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science1998, 280, 1427.
[36] Malashkevich, V, N.; Kammerer, R. A.; Efimov, V. P.; Schulthess, T.; Engel, J. Science1996, 274, 761.
[37] Messmore, B. W.; Sukerkar, P. A.; Stupp, S. I. J Am Chem Soc2005, 127, 7992.
[38] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L. C.; Harris, F. W.; Lotz, B. Macromolecules1999, 32, 524.
[39] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Harris, F. W. Phys Rev Lett1999, 83, 4558.
[40] Li, C. Y.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z. Calhoun, B. H.; Harris, F. W.; Chien, L. C.; Lotz, B. J Am ChemSoc2001, 123, 2462.
[41] Maillard, D.; Prud’homme, R. E. Macromolecules2006, 39, 4272.
[42] Maillard, D.; Prud’homme, R. E. Macromolecules2008, 41, 1705.
[43] Rong-Ming Ho, Yeo-Wan Chiang, Chi-Chun Tsai, Chu-Chieh Lin, Bao-TsanKo, and Bor-Han Huang. J. AM. CHEM. SOC. 2004, 126, 2704.
[44] Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am.
Chem. Soc. 2002, 124, 12761–12773.
[45] L.C.Sawyer, D.T.Grubb, G.F.Meyers, Polymer Microscopy, 3rd ed., Springer, New York 2008, pp. 1-25 .
[46] R.G.Alamo, in Molecular Characterization and Analysis of Polymers, 1st ed. (Eds: J. M. Chalmers , R. J. Meier ), Elsevier , Amsterdam 2008, pp. 255 .
[47] D.C.Bassett, Principles of Polymer Morphology, Cambridge University Press, New York 1981, pp. 16-36.
[48] Keith, H. D.; Padden, F. J., Jr.; Russell, T. P. Macromolecules 1989, 22, 666.
[49] Ho, R.-M.; Ke, K.-Z.;Chen, M. Macromolecules 2000, 33, 7529.
[50] Xu, J.; Guo, B.-H.; Zhang, Z.-M.; Zhou, J.-J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G.-Q.; Schultz, J. M. Macromolecules 2004, 37, 4118.
[51] Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Russell, T. P.; Lee, J.H.; Jho, J. Y. Macromolecules 2005, 38, 104.
[52]Keller, A. J. Polym. Sci. 1955, 17, 351.
[53]Keith, H. D.; Padden, F. J., Jr J. Polym. Sci. 1959, 39, 101.
[54]Keith, H. D.; Padden, F. J., Jr J. Polym. Sci. 1959, 39, 123.
[55]Price, F. P. J. Polym. Sci. 1959, 39, 139.
[56]Keller, A. J. Polym. Sci. 1959, 39, 151.
[57]Fujiwara, Y. J. Appl. Polym. Sci. 1960, 4, 10.
[58] Ho, R.-M.;Chao,C,C. Macromolecules 2000, 33, 7529.
[59] Kazuyoshi Watanabe, Hiroshi Iida, Kazuo Akagi. Adv. Mater. 2012, 24, 6451.
[60] Schenning APHJ, Jonkheijm P, Peeters E, Meijer EW. Hierarchcal.
J Am ChemSoc, 2001, 123, 409.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *