帳號:guest(44.195.23.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴亦賢
作者(外文):Lai, I Hsien
論文名稱(中文):奈米銀墨水組成及乾燥行為對其在玻璃基板上表現之效應研究
論文名稱(外文):Study on Effect of Nano-silver Ink Composition and Drying Behavior to Its Performance on Glass Substrate
指導教授(中文):周更生
指導教授(外文):Chou, Kan Sen
口試委員(中文):段興宇
劉博滔
口試委員(外文):TUAN , HSING YU
Liu , Bo Tau
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102030601
出版年(民國):104
畢業學年度:104
語文別:中文英文
論文頁數:109
中文關鍵詞:二氧化鈦黏著性塗佈咖啡環
外文關鍵詞:titanium dioxideadhseioncoatingcoffee ring
相關次數:
  • 推薦推薦:0
  • 點閱點閱:142
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究第一部份為在奈米銀墨水中添加二氧化鈦奈米粉體,探討銀膜對玻璃基板黏著性的效應。在塗佈前為確保二氧化鈦在銀墨水中分散良好,因此將其pH值調整至10左右,此時二氧化鈦的界達電位高達-50mV,再將其混合至銀墨水中,經由粒徑分析確認皆無聚集現象,實屬分散良好之懸浮液。
接著以刮刀塗佈此混合墨水在玻璃基板上,經過乾燥後,用高溫爐以280℃-340℃溫度燒結20分鐘,結果發現燒結溫度及二氧化鈦含量皆與黏著性有正比關係,適當條件下可以達到ASTM D3359的最高黏著等級(5B),而此時其拉拔應力必須高於7.88MPa,最後利用電子能譜儀(XPS)來分析薄膜,推測鈦或矽與銀共用一個氧的鍵結方式是造成黏著改善的重要原因之一。
然而增加二氧化鈦含量卻會造成銀薄膜的體積電阻率上升,因此與黏著強度之間需要妥協,故引進一個新參數 -- Z值為指標來建立兩者的關聯。由分析結果顯示,若黏著和電阻的比重關係為1:0.5時,在燒結溫度320℃和固含量8wt%可得到最高的Z值,並以Gauss2D模組來擬合其R^2值為0.958,應能為此系統提供較為精準的預測值。
第二部分為利用咖啡環效應在玻璃上製作導電線路,由於銀墨水溶劑為水對於玻璃潤濕性差,因此藉由臨界膠束濃度找到表面張力劑的添加量且由照射UV光增加玻璃的表面能,再經由微量調控壓力的點膠機以0.2~0.6psi的壓力和0.8~1.1 cm/sec的平台移動速度繪製出寬為7.68μm、高為0.691μm的銀導線,之後將導線做交錯線路設計,發現乾燥溫度高銀導線交錯點容易窄且高;反之,乾燥溫度低則會寬且矮,因此可依需求做溫度的調適。最後,為了要實現能大量生產的概念,設計了自製塗佈模具來進行多條繪製,實驗證明,雖然此方法電阻會稍高,但仍成功的繪製出多條銀導線電路交錯網格。
In the first part of this thesis, the effect of titania addition to silver colloids on adhesion to a glass substrate was investigated. When the pH of titania suspension was adjusted to 10, the zeta potential of titania could reach – 50 mv and the dispersion was good. Furthermore, the particle size measurement indicated that there was almost no agglomeration for the mixed ink and therefore the dispersion behaved reasonably well.
After coating of this ink by doctor blade method, drying and then sintering between 280 and 340oC for 20 minutes, the adhesion strength between the silver film and glass substrate was measured according to ASTM D3359 and D4541. Our results indicated that adhesion strength increased proportionally with TiO2 solid content and sintering temperature. It could reach the highest 5B level and the absolute stress must be above 7.88 MPa. Finally, XPS analysis of the film suggested that adhesion strength was enhanced due to sharing of oxygen among Si, Ti and Ag atoms.
Nevertheless the electrical resistance of the silver film also increased after titania addition. We therefore need to comprise between adhesion and electrical conductivity. For this purpose, we introduced the new parameter – Z value to establish correlation between adhesion and conductivity. Our results indicated that when the weighting ratio between adhesion and resistance is 1:0.5, we can get the highest Z-value at TiO2 solid content 8wt% and sintering temperature 320oC. Also, the results were simulated with Gauss2D model and the R2 is 0.958 for a good prediction of adhesion strength and electrical conductivity of silver film on glass substrate.
In the second part of this thesis, we generated conductive silver lines on glass substrate by coffee ring effect. Due to poor wetting of water to glass, a small amount of surfactant and UV irradiation of glass substrate prior to experiment will help to alleviate this problem to obtain desirable coffee ring effect. We used the dispenser to obtain silver lines whose width was 7.68μm and height 0.691μm at 0.2~0.6psi air pressure and 0.8~1.1cm/s. Next, the cross lines were drawn. Our results indicated that if the drying temperature was high, the intersection would be narrow but high. Otherwise it would be wide but short. Finally, a self-designed tool was used to generate patterns with intersecting silver lines.
摘要 I
Abstract II
目錄 V
圖目錄 VII
表目錄 X
第一章緒論 1
第二章文獻回顧 2
2.1膠體粒子的分散理論 2
2.1.1膠體的帶電行為 2
2.1.2電雙層理論 (DLVO Theory) 2
2.1.3漿料分散理論 4
2.2分散方法的比較 7
2.2.1照射UV光 7
2.2.2超音波震盪和pH值的調控 9
2.2.3 pH值和離子強度的效果 12
2.3黏著機制介紹 14
2.4增加奈米銀對基板黏著的方法 16
2.4.1基材的表面處理 16
2.4.2在奈米銀墨水內加入介質 22
2.5奈米銀在噴墨上的應用 24
2.5.1咖啡環的生成 24
2.5.2 Marangoni effect 26
2.5.3咖啡環形成機制及改進 27
2.6總結 29
第三章實驗方法 30
3.1實驗藥品與儀器 30
3.1.1藥品 30
3.1.2儀器與設備 34
3.2實驗流程 39
3.2.1改善二氧化鈦粉末的界達電位 39
3.2.2測試奈米銀粒子與玻璃基版之黏著強度 39
3.2.3以四點探針測量不同濃度之二氧化鈦銀薄膜的導電率 42
3.2.4以銀墨水藉由咖啡環效應製成導電線路 42
3.3分析方法 44
3.3.1界達電位 44
3.3.2 Standard Test Methods for Measuring Adhesion by Tape Test (ASTM D3359-08) 45
3.3.3 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers (ASTM D4541-95) 47
第四章實驗結果與討論 48
4.1改善二氧化鈦溶液的界達電位 48
4.1.1固含量對界達電位的影響 48
4.1.2小結 51
4.2測試奈米銀粒子與玻璃基版之黏著強度 52
4.2.1銀墨水與二氧化鈦混合懸浮液特性分析 52
4.2.2以ASTMD3359規範測試奈米銀粒子與玻璃基版之黏著性 55
4.2.3以ASTMD4541規範測試奈米銀粒子與玻璃基版之黏著強度 57
4.2.4使用Origin分析黏著結果 61
4.2.5黏著機制 63
4.2.6小結 66
4.3測試奈米銀粒子與玻璃基版之導電性 67
4.3.1以四點探針測量不同固含量之二氧化鈦銀薄膜的導電率 67
4.3.2使用Origin分析導電結果 71
4.3.3小結 72
4.4奈米銀粒子導電性和黏著強度之綜合討論 73
4.4.1使用Origin綜合分析導電性和黏著強度之結果 73
4.4.2小結 80
4.5以銀墨水藉由咖啡環效應製成導電線路 81
4.5.1銀墨水及玻璃基板之特性分析及其濃度選擇 81
4.5.2以點膠方式製成導電線路 85
4.5.3塗佈缺陷分析 89
4.5.4銀導線黏著及導電性分析 91
4.5.5使用自製模具製成導電線路及電路設計 95
4.5.6小結 103
第五章結論 104
第六章參考文獻 106
Araki J.,“Electrostatic or steric – preparations and characterizations of
well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides.” Soft Matter 2013, 9, 4125-4141.
Abad J., C. Gonzalez, P. L. de Andres, E. Roman., “Characterization of thin
silicon overlayers on rutile TiO2.”Phys. Rev. B 2011,82, 165420.
Balfour J. G., “Fine particle titanium dioxide-Its properties and uses.” Surface
Coatings International1992, 2, 1-23.
Banash M. A., G. C. Stuart, “A quantitative study of polymeric dispersant adsorption
onto oxide-coated titania pigments.” Progress in Organic Coatings1999,35, 37-44.
Chitvoranund N., Jiemsirilers S., Kashima D.P., “Effects of surface treatments on
adhesion of silver film on glass substrate fabricated by electroless plating.” Journal of the Australian Ceramic Society 2013,49,62-69.
Deegan R.D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten,
“Capillary flow as the cause of ring stains from dried liquid drops.” Nature
1997, 389, 827.
Deegan R.D., O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, “Contact
line deposits in an evaporating drop.” Physical Review E 2000, 62, 756.
Faure B., S.A. German, A. Anwar, V. Irune, B. Gemma, R. D. M. Yolanda, Bergström.
Lennart, “Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens.” Science and Technology of Advanced Materials2013,14,023001.
Gent A. N., C. W. Lin , “Model studies of the effect ofsurface roughness and
mechanical interlocking on adhesion.” J. Adhes. Technol1990, 32, 113-147.
Heijman S. G. J., H. N. Stein, “ Electrostatic and steric stabilization of TiO2
Dispersions.” Langmuir 1995, 11, 422-427.
Hua H., R. G. Larson, “Marangoni effect Reverses Coffee-Ring Depositions”, Journal
of Physical Chemistry B 2006, 110, 7090.
Jang D., D. Kim, B. Lee, S. Kim, M. Kang, D. Min , J.Moon, “Nanosized Glass Frit
as an Adhesion Promoter for Ink-JetPrinted Conductive Patterns on Glass
Substrates Annealed at High Temperatures.” Advanced function
Materials2008,18,2862.
Jeong S., H. C. Song , W. W. Lee , Y. Choi , S. S. Lee , B. H. Ryu , “Combined
Role of Well-Dispersed Aqueous Ag Ink and the Molecular Adhesive Layer in Inkjet Printing the Narrow and Highly Conductive Ag Features on a Glass Substrate.” J.Phys.Chem.C2010, 114, 22277-22283.
Joo S. , D.F. Baldwin , “Adhesion mechanisms of nanoparticle silver to substrate
materials: identification.” Nanotechnology2010,21,055240.
Kosmulski M., “The significance of the difference in the point of zero charge between
rutile and anatase.” Advances in Colloid and Interface Science 2002, 99, 255- 264.
Lebrette S., C. Pagnoux , P. Abélard, “Stability of aqueous TiO2 suspensions:
influence of ethanol.”Journal of Colloid and Interface Science2004, 280, 400- 408.
Magdassi S., M. Grouchko, D. Toker , A. Kamyshny , I. Balberg , O. Millo , “Ring
Stain Effect at Room Temperature in Silver Nanoparticles Yields High Electrical
Conductivity.” Langmuir 2005, 21, 10264-10267.
Mandzy N., E. Grulkeb, T. Druffela, “Breakage of TiO2 agglomerates in
electrostatically stabilized aqueous dispersions.”Powder Technology2005, 160, 121-126.
Marin A. G., H. Gelderblom , D. Lohse , J. H. Snoeijer , “Order-to-Disorder
Transition in Ring-Shaped Colloidal Stains.” PRL 2011, 107 ,085502.
Niño-Martínez, N., G. A. Martínez-Castañón, A. Aragón-Piña,
F. Martínez-Gutierrez, J. R. Martínez-Mendoza , F.Ruiz, “Characterization of
silver nanoparticles synthesized on titanium dioxide fine particles.” IOPScience
2008, 19, 065711.
PossartW., “Experimental and theoretical description of the electrostatic component of
adhesion at polymer/metalcontacts.”Int. J. Adhes.1988, 8, 77-83.
Pulido Meliána E., González Díaza O., Do˜na Rodrígueza J. M. , Colónb G., Navíob
J. A. , Macíasb M. , Pérez Pe˜naa J., “Effect of deposition of silver on structural
characteristics and photoactivity of TiO2-based photocatalysts .” Applied
Catalysis B: Environmental 2012 ,127 ,112-120.
Saltiel C., Q. Chen , S. Manickavasagam , L. S. Schadler , R. W. Siegel , M. P.
Menguc, “Identification of the dispersion behavior of surface treated nanoscale powders.” Journal of Nanoparticle Research 2004, 6, 35-46.
Sanjinés R., H. Tang , H. Berger , F. Gozzo , G. Margaritondo , F. Lévy , “ Electronic
structure of anatase TiO2 .”Journal of Applied Physics 1994, 75, 29-45.
Sato K., J. G. Li , H. Kamiya , T.Ishigaki , “Ultrasonic dispersion of TiO2
nanoparticles in aqueous suspension.” The American Ceramic Society2008, 91, 2481–2487.
Sen S., M. L. Rama, S. Roya , B. K. Sarkar, “ The structural transformation of
anatase TiO2 by high-energy vibrational ball milling.” Journal of Material Research1999, 14, 841-848.
Singh M., Haverinen H. M., Dhagat P., Jabbour G.E., “Inkjet printing – process and
its applications.” Adv Mater 2010 , 22 , 673-685.
Sommer A. P., Noemi R., “Formation of Crystalline Ring Patterns on Extremely
Hydrophobic Super smooth Substrates: Extension of Ring Formation
Paradigms.” CRYSTAL GROWTH & DESIGN 2005, 5 , 551-557.
Suttiponparnit K., J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul , P.
Biswas, “Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties.”Nanoscale Research Letters2001,6,27-34.
Vasylkiv O., Y. Sakka, “Synthesis and colloidal processing of zirconia
nanopowder.”Journal of the American Ceramic Society 2001, 84, 2489-2494.
Wang S., H. Qian , Y. Hu, W. Dai, Y. Zhong, J. Chen, X. Hu, “Facile one-pot synthesis
of uniform TiO2–Ag hybrid hollow spheres with enhanced photocatalytic
activity.” Dalton Trans 2013, 42, 1122-1128.
Zhang Z., C. C. Wang , R. Zakaria , J. Y. Ying, “Role of particle size in
nanocrystalline TiO2-based photocatalysts.”The Journal of pHysical Chemistry B 1998, 102, 10871-10878.
陳昕陽“奈米銀墨水乾燥行為及對聚亞醯胺基板黏著特性之研究”清華大學論
文,台灣,新竹(2014)
劉怡彣“改善奈米二氧化鈦在水相中的分散性”清華大學論文,台灣,新竹
(2008)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *