帳號:guest(18.191.254.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃若羽
作者(外文):Huang, Juo-Yu
論文名稱(中文):發展共同感染模式針對RSV與HPIV3並應用於Ad-RSV-F/HPIV3-F疫苗之效力測試
論文名稱(外文):Establishment of mice model for RSV and HPIV3 co-infection and use in the assessment of Ad-RSV-F/HPIV3-F vaccine
指導教授(中文):周彥宏
張鑑中
指導教授(外文):Chow, Yen-Hung
Chang, Chien-Chung
口試委員(中文):莊再成
柯俊良
口試委員(外文):Pele Chong
Ko, Jiunn- Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:101080605
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:71
中文關鍵詞:呼吸道融合病毒第三型人類副流感病毒共同感染雙價疫苗
外文關鍵詞:respiratory syncytial virushuman parainfluenza virus type 3co-infectionbi-valent vaccine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:121
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
呼吸道融合病毒 (respiratory syncytial virus, RSV) 與第三型人類副流感病毒 (human parainfluenza virus type 3) 是造成嬰幼兒急性呼吸道感染的主要病毒性病原,流行範圍廣及全世界,但目前仍未有良好的預防與治療措施。根據流行病學的研究統計,呼吸道病毒共同感染 (co-infection) 可能將增加疾病嚴重程度,然而現今對共同感染現象有諸多不清楚之處也缺乏合適的動物模式。於本研究中,首度以BALB/c 小鼠建立HPIV3 與 RSV 共同感染的動物模式,同時證明共同感染的確會增加肺部發炎狀態和嗜酸性白血球的浸潤,以及免疫反應偏向Th2 response 等疾病加劇的特徵。進一步,測試本實驗室先前以腺病毒載體構築表達RSV F 蛋白與HPIV3 F蛋白之雙價疫苗-Ad-RSV-F/HPIV3-F 之應用可行性。對BALB/c 小鼠進行免疫,確實誘發分別對RSV及HPIV3 專一之抗體;取免疫後之小鼠脾臟細胞經由抗原刺激後能夠促使其分泌細胞激素IFN-γ與IL-4,並且誘發T 細胞之增生,這些結果顯示雙價疫苗-Ad-RSV-F/HPIV3-F 引起的免疫反應包含體液性與細胞性免疫,亦綜合了Th1與Th2 的反應。另外,於小鼠免疫後再套用本研究中建立的HPIV3 與 RSV 共同感染動物模式以評估雙價疫苗-Ad-RSV-F/HPIV3-F 的實際保護效力,唯效果不如預想,該部分需要再進行檢討及修正。總結上述結果,本研究已完成HPIV3 與 RSV 共同感染動物模式之建立,而另一方面,雙價疫苗-Ad-RSV-F/HPIV3-F 雖然可以引發小鼠之免疫反應,但是免疫強度似乎不足提供對HPIV3 與 RSV 共同感染的保護力。
Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the major causes of acute respiratory infections in infants. Some clinical reports have already shown that co-infection might increase disease severity. Here, we would like to develop a model for HPIV3 and RSV co-infection in BALB/c mice and to know whether co-infection will cause more severe pathogenesis. Furthermore, the adenovirus expressing fusion (F) protein of RSV and fusion (F) protein of HPIV3 (Ad-RSV-F/HPIV3-F) was constructed and vaccinated to test its protective efficacy using co-infection of HPIV3 and RSV mouse model. The immune responses specific to RSV and HPIV3, and lung pathology of animals challenged with RSV and HPIV3 are investigated. The results demonstrated that HPIV3 and RSV co-infection does increase disease severity in BALB/c mice as evidenced by promotion of eosinophilia and Th2-skewed immune response. In addition, recombinant adenovirus expressing both RSV F and HPIV3 F proteins induced humoral and cellular immune responses. BALB/c mice immunized with Ad-RSV-F/HPIV3-F produced antibodies specific to RSV and HPIV3. The splenocytes collected from the Ad-RSV-F/HPIV3-F-immunized mice showed T cell proliferation and secreted IFN-γ and IL-4 after re-stimulation with antigens, indicating the induction of Th1 and Th2 immune responses. Unfortunately, this recombinant adenovirus expressing the RSV F protein and HPIV3 F protein was unable to evoke a protective immune response in BLAB/c upon challenge with RSV and HPIV3. Taken together, these results not only implicate the mechanism of pathogenesis of RSV and HPIV3 co-infection but also establish a pre-clinical model to evaluate the efficacy of bi-valent vaccine candidate against RSV and HPIV3 infection.
Abstract I
摘要 II
目錄 IV
一、緒論 1
1-1-1 RSV的流行病學 1
1-1-2 RSV 的病毒結構與抗原特性 1
1-1-3 RSV造成的症狀 3
1-1-4 引起嚴重症狀的風險因子 3
1-1-5 RSV 感染引起的發炎反應與動物模式 4
1-2-1 HPIV3的流行病學與造成的症狀 5
1-2-2 HPIV3 的病毒結構與抗原特性 5
1-2-3 HPIV3感染引起的免疫反應 6
1-3 共同感染 7
1-4-1 疫苗發展簡史 7
1-4-2 RSV 和 HPIV3 疫苗開發歷程 8
1-5 腺病毒載體 10
1-6 研究動機及目的 10
二、材料與方法 12
2-1 細胞與病毒的培養 12
2-1-1哺乳動物細胞 12
2-1-2基因改造 (genetically modified) 細胞 13
2-1-3呼吸道融合病毒 (Respiratory Syncytial Virus-B1, RSV-B1) 13
2-1-4第三型人類副流感病毒(Human Parainfluenza Virus 3-C243, HPIV3-C243) 13
2-1-5病毒力價測定 14
2-2 Ad-RSV-F/HPIV3-F 疫苗之生產和蛋白質表現分析 15
2-2-1 Ad-RSV-F/HPIV3-F增殖與純化 15
2-2-2 Ad-RSV-F/HPIV3-F 力價測定 16
2-2-3 SDS-PAGE 凝膠電泳和西方墨點法(Western blotting) 16
2-3 RSV 和 HPIV3 雙重感染之小鼠模式建立 (development of mice model for RSV and HPIV3 co-infection) 17
2-3-1小鼠感染 (HPIV3 and RSV challenge) 17
2-3-2小鼠血液採集與肺臟取得 17
2-3-3酵素免疫分析測定抗體力價 (antibody titer determination by ELISA) 18
2-3-4組織包埋切片與免疫組織化學染色(Immunohistochemistry, IHC) 18
2-3-5 mRNA isolation and reverse transcription 20
2-3-6 Quantitative polymerase chain reaction (qPCR) 21
2-4 分析Ad-RSV-F/HPIV3-F 疫苗引發之免疫反應 21
2-4-1以Ad-RSV-F/HPIV3-F免疫小鼠 21
2-4-2體液性免疫分析 22
2-4-2-1小鼠血液採集與抗體力價測定 22
2-4-3細胞性免疫分析 22
2-4-3-1 ELISPOT 23
2-4-3-2 T cell proliferation assay 24
2-5 測試Ad-RSV-F/HPIV3-F之保護效力 24
2-5-1小鼠注射疫苗後感染HPIV3及RSV 24
2-5-2組織包埋切片與免疫組織化學染色 25
2-5-3 Quantitative polymerase chain reaction (qPCR) 25
2-5-4分析小鼠肺部T細胞浸潤之狀態 25
2-6 統計分析 26
三、結果 27
3-1 RSV 和 HPIV3 雙重感染之小鼠模式建立 (development of mice model for RSV and HPIV3 co-infection) 27
3-1-1 測試感染HPIV3後96小時再感染RSV是否加重肺部發炎 27
3-1-2 以感染兩病毒間的時間間隔做為改變條件觀察是否加重肺部發炎 28
3-1-2-1 同一時間感染HPIV3及RSV 28
3-1-2-2 感染HPIV3後間隔5小時再感染RSV 28
3-1-2-3 感染HPIV3後間隔24小時再感染RSV 29
3-1-2-4 Th1/Th2 response 分析 29
3-2 分析Ad-RSV-F/HPIV3-F 疫苗引發之免疫反應 30
3-2-1 製備複製缺陷型腺病毒載體雙價疫苗 (Ad-RSV-F/HPIV3-F) 30
3-2-2 西方墨點法(western blotting)確認RSV F 和HPIV3 F 蛋白之表現 30
3-2-3 體液性免疫分析 31
3-2-4 細胞性免疫分析–ELISPOT 31
3-2-5 細胞性免疫分析–T細胞增生 (proliferation) 32
3-3 測試Ad-RSV-F/HPIV3-F之保護效力–lung pathology 32
3-4 測試Ad-RSV-F/HPIV3-F之保護效力–viral clearance 33
四、討論 34
4-1 RSV 和 HPIV3 雙重感染之小鼠模式建立 34
4-2 Ad-RSV-F/HPIV3-F 疫苗 35
符號及縮寫檢索表 40
參考文獻 41
1. Paes, B.A., et al., A decade of respiratory syncytial virus epidemiology and prophylaxis: translating evidence into everyday clinical practice. Can Respir J, 2011. 18(2): p. e10-9.
2. Shay, D.K., et al., Bronchiolitis-associated hospitalizations among US children, 1980-1996. Jama, 1999. 282(15): p. 1440-6.
3. Glezen, W.P., et al., Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child, 1986. 140(6): p. 543-6.
4. Legg, J.P., et al., Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med, 2003. 168(6): p. 633-9.
5. Rudraraju, R., et al., Respiratory syncytial virus: current progress in vaccine development. Viruses, 2013. 5(2): p. 577-94.
6. Nair, H., et al., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet, 2010. 375(9725): p. 1545-55.
7. Gould, P.S. and A.J. Easton, Coupled translation of the second open reading frame of M2 mRNA is sequence dependent and differs significantly within the subfamily Pneumovirinae. J Virol, 2007. 81(16): p. 8488-96.
8. Spann, K.M., K.C. Tran, and P.L. Collins, Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines. J Virol, 2005. 79(9): p. 5353-62.
9. Collins, P.L. and B.S. Graham, Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol, 2008. 82(5): p. 2040-55.
10. Gan, S.W., et al., The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J Biol Chem, 2012. 287(29): p. 24671-89.
11. Cane, P.A., Analysis of Linear Epitopes Recognised by the Primary Human Antibody Response to a Variable Region of the Attachment (G) Protein of Respiratory Syncytial Virus. Journal of Medical Virology, 1997. 51.
12. JOHNSON, P.R., The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: Extensive sequence divergence between antigenically related proteins. Proc. Natl. Acad. Sci., 1987. 84.
13. Johnson, P.R. and P.L. Collins, The fusion glycoproteins of human respiratory syncytial virus of subgroups A and B: sequence conservation provides a structural basis for antigenic relatedness. J Gen Virol, 1988. 69 ( Pt 10): p. 2623-8.
14. Henrickson, K.J., Parainfluenza Viruses. Clinical Microbiology Reviews, 2003. 16(2): p. 242-264.
15. Borchers, A.T., et al., Respiratory syncytial virus--a comprehensive review. Clin Rev Allergy Immunol, 2013. 45(3): p. 331-79.
16. Openshaw, P.J. and J.S. Tregoning, Immune responses and disease enhancement during respiratory syncytial virus infection. Clin Microbiol Rev, 2005. 18(3): p. 541-55.
17. Becker, Y., Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy--a review. Virus Genes, 2006. 33(2): p. 235-52.
18. Epstein, F.H.M.D. and M.E.M.D.P. Rothenberg, Eosinophilia. The New England Journal of Medicine, 1998. 338(22): p. 1592-1600.
19. Lee, M.S., et al., Antibody responses to bovine parainfluenza virus type 3 (PIV3) vaccination and human PIV3 infection in young infants. J Infect Dis, 2001. 184(7): p. 909-13.
20. Schomacker, H., et al., Pathogenesis of acute respiratory illness caused by human parainfluenza viruses. Curr Opin Virol, 2012. 2(3): p. 294-9.
21. Porotto, M., et al., Mechanism of fusion triggering by human parainfluenza virus type III: communication between viral glycoproteins during entry. J Biol Chem, 2012. 287(1): p. 778-93.
22. Spriggs, M.K., et al., Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity. J Virol, 1987. 61(11): p. 3416-23.
23. Calvo, C., et al., Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain. J Clin Virol, 2008. 42(3): p. 268-72.
24. Drews, A.L., et al., Dual respiratory virus infections. Clin Infect Dis, 1997. 25(6): p. 1421-9.
25. Lombard, M., P.P. Pastoret, and A.M. Moulin, A brief history of vaccines and vaccination. Rev Sci Tech, 2007. 26(1): p. 29-48.
26. Hinman, A.R., et al., Vaccine shortages: history, impact, and prospects for the future. Annu Rev Public Health, 2006. 27: p. 235-59.
27. Kim, H.W., et al., Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol, 1969. 89(4): p. 422-34.
28. Connors, M., et al., Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of interleukin-4 (IL-4) and IL-10. J Virol, 1994. 68(8): p. 5321-5.
29. Schmidt, A.C., et al., Progress in the development of human parainfluenza virus vaccines. Expert Rev Respir Med, 2011. 5(4): p. 515-26.
30. Majhen, D., et al., Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Hum Gene Ther, 2014. 25(4): p. 301-17.
31. Tatsis, N. and H.C. Ertl, Adenoviruses as vaccine vectors. Mol Ther, 2004. 10(4): p. 616-29.
32. Shao, H.Y., et al., Immunogenic properties of RSV-B1 fusion (F) protein gene-encoding recombinant adenoviruses. Vaccine, 2009. 27(40): p. 5460-71.
33. Brincks, E.L., et al., Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J Immunol, 2013. 190(7): p. 3438-46.
34. Soares, A., et al., Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods, 2010. 362(1-2): p. 43-50.
35. Bekhof, J., et al., Co-infections in children hospitalised for bronchiolitis: role of roomsharing. J Clin Med Res, 2013. 5(6): p. 426-31.
36. Rachmawati, N.M., et al., Inhibition of antibody production in vivo by pre-stimulation of Toll-like receptor 4 before antigen priming is caused by defective B-cell priming and not impairment in antigen presentation. Int Immunol, 2013. 25(2): p. 117-28.
37. Biswas, S.K. and E. Lopez-Collazo, Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol, 2009. 30(10): p. 475-87.
38. Sabbah, A. and S. Bose, Retinoic acid inducible gene I activates innate antiviral response against human parainfluenza virus type 3. Virol J, 2009. 6: p. 200.
39. Liu, P., et al., Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol, 2007. 81(3): p. 1401-11.
40. Haynes, L.M., et al., Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol, 2001. 75(22): p. 10730-7.
41. Imaizumi, T., et al., TLR4 signaling induces retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5 in mesangial cells. J Nephrol, 2013. 26(5): p. 886-93.
42. Fulton, R.B., D.K. Meyerholz, and S.M. Varga, Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol, 2010. 185(4): p. 2382-92.
43. Iikuni, N., et al., Cutting edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol, 2009. 183(3): p. 1518-22.
44. Kaparakis, M., et al., CD4+ CD25+ regulatory T cells modulate the T-cell and antibody responses in helicobacter-infected BALB/c mice. Infect Immun, 2006. 74(6): p. 3519-29.
45. Vemula, S.V., et al., Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One, 2013. 8(4): p. e62496.
46. Candolfi, M., et al., Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro. Neuro Oncol, 2007. 9(3): p. 245-58.
47. Beilharz, T.H. and T. Preiss, Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA, 2007. 13(7): p. 982-97.
48. Fuke, H. and M. Ohno, Role of poly (A) tail as an identity element for mRNA nuclear export. Nucleic Acids Res, 2008. 36(3): p. 1037-49.
49. Gorziglia, M.I., et al., Generation of an adenovirus vector lacking E1, e2a, E3, and all of E4 except open reading frame 3. J Virol, 1999. 73(7): p. 6048-55.
50. Xu, Z.-L., et al., Woodchuck hepatitis virus post-transcriptional regulation element enhances transgene expression from adenovirus vectors. Biochimica et Biophysica Acta (BBA) - General Subjects, 2003. 1621(3): p. 266-271.
51. Du, J., et al., The combined use of viral transcriptional and post-transcriptional regulatory elements to improve baculovirus-mediated transient gene expression in human embryonic stem cells. J Biosci Bioeng, 2010. 109(1): p. 1-8.
52. Zhan, X., et al., Sendai virus recombinant vaccine expressing hPIV-3 HN or F elicits protective immunity and combines with a second recombinant to prevent hPIV-1, hPIV-3 and RSV infections. Vaccine, 2008. 26(27-28): p. 3480-8.
53. Hall, C.B., Respiratory syncytial virus and parainfluenza virus. N Engl J Med, 2001. 344(25): p. 1917-28.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *