帳號:guest(3.14.70.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王宇靈
作者(外文):Wang, Yu-Ling
論文名稱(中文):使用微陣列西方分析法分析正常與惡性前列腺細胞系之間的表達差異
論文名稱(外文):Profiling the protein expression difference between normal vs. malignant prostate cell lines using Micro-Western Array
指導教授(中文):陳令儀
褚志斌
指導教授(外文):Chen, Linyi
Chuu, Chin-Pin
口試委員(中文):張中和
劉俊揚
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080595
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:46
中文關鍵詞:前列腺癌
外文關鍵詞:prostate cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微西方墨點分析{Micro-Western Array (MWA)}是一種以抗體為基礎,且由GeSim Nanoplotter arrayer、 GE multiphor和 Licor Odyssey scanner組合而成的反向蛋白陣列分析儀器( reverse-phase protein array)。微西方墨點分析法(MWA)可同時檢測6~15個樣品在96~384個不同的抗體中,蛋白質或磷酸化的表現差異。在細胞系統的研究上,不論是蛋白質譜的表現特性或是訊號傳遞的網路,都已經被證實是可行的。我們使用微西方墨點分析法(MWA)去檢測708支不同的重要訊號蛋白,在正常攝護腺表皮細胞(RWPE-1, PZ-HPV-7)與攝護腺癌細胞(PC-3, DU-145, CA-HPV-10, LNCaP 104-S, LNCaP 104-R1)上的蛋白質表現差異。其中,我們發現一共有28支抗體在蛋白質的表現量上有著顯著的差異。在傳統西方墨點分析法驗證後,我們發現其中的四支抗體,分別為PAK2, PICK1, TEC 和 COX1,在正常攝護腺表皮細胞與攝護腺癌細胞上之間的蛋白質表現量,特別有顯著的差異。我們對於cyclooxygenase-1 (COX-1) 特別感興趣,原因在於COX -1在蛋白質的表現量上,正常的攝護腺表皮細胞都顯著的多於攝護腺癌細胞。然而cyclooxygenase (COX)是一種從花生四烯酸( arachidonic acid)到攝護腺素( prostaglandins)的生物途徑中,重要的中心酵素之一。我們的初步結果表示,COX-1的不正常表現影響了細胞增殖能力,以及攝護腺癌細胞的遷移和侵襲能力。我們懷疑COX-1可能藉由發炎途徑調控了攝護腺癌細胞的生長和轉移能力。除此之外,我們的蛋白質譜的數據將對未來的藥物發展和攝護腺癌細胞訊號網路的研究上相信會有很大的幫助。
Micro-Western Array (MWA) is an antibody-based modified reverse phase array composes of a GeSim Nanoplotter arrayer, a GE multiphor, and a Licor Odyssey scanner. MWA allows detecting protein expression level or phosphorylation status change of 96-384 different antibodies in 6-15 samples simultaneously. It has been shown to be effective in characterizing the protein profile or signaling network in cell systems. We used MWA to assay the protein expression profile in normal human like prostate epithelial cell lines (RWPE-1, PZ-HPV-7) vs. malignant human prostate cancer (PCa) cell lines (LNCaP 104-S, LNCaP 104-R1, PC-3, DU-145, CA-HPV-10) with 708 antibodies detecting important signaling proteins in cells. According to our study, we found 28 proteins differently expressed in cancerous PCa cells as compared to normal prostate cells. Four of the proteins, the PAK2, PICK1, TEC, and COX1 showed significantly different between normal and cancer PCa cells and were rarely studied previously. We focused on examining the role of cyclooxygenase-1 (COX-1) in PCa cells. Protein level of COX1 in normal cell line is much higher than in PCa cell line. Cyclooxygenase (COX) is the central enzyme in the biosynthetic pathway to generate prostaglandins from arachidonic acid. We discovered that overexpression of COX-1 suppressed the cell proliferation, migration, and invasion of PCa cells. These observations indicated the possibility that COX-1 may be involved in the regulation of tumor growth and metastasis of PCa, possibly via regulation of inflammation pathways. We believe that our protein profiling database will be useful for drug discovery and signaling network study in PCa research.
Abstract………………………………………………..Ⅰ
摘要………………………………………………….Ⅲ
誌謝…………………………………………………….Ⅴ
Catalog……………………………………………………..Ⅷ
Introduction…………………………………………..1
Prostate and Prostate Cancer……………………………..1
Normal and prostate cancer cell lines…………………….2
Micro-Western Array……………………………………..4
Materials and methods………………………………...8
Reagent……………………………………………..……8
Cell Culture…………………………………………..8
Cell Proliferation Assay……………………………..…8
Western Blotting Analysis……………………………….9
Micro-Western Arrays……………………......................10
Protein over-expression…………………………………13
siRNA knockdown of PAK2、PICK1 and TEC……………………………………………………...14
Wound Healing Assay……………………………….….15
Transwell Migration Assay…………………………..…15
Transwell Invasion Assay………………………….…16
Data Analysis…………………………………………17
Result and Discussion…………………………………20
Profiling the protein expression in human normal and cancerous prostate cell lines by Micro-Western Array (MWA)………….............................................................20
Differential protein expression between normal and cancer cell lines…………… ………………………………..…20
Traditional western blotting validated significant change protein in MWA………………………………………...21
Cell proliferation for knock down PAK2、PICK1 and TEC in LNCaP 104-R1……………………………………....23
PC3 over-express COX1 affected cell proliferation………………………………………….....26
Overexpression of COX1 in PC3 cells affected cell motility…………………………………………….……26
Overexpression of COX1 affected cell migration and invasion…………………………………………….…27
Over-expression level of COX1 protein affected some EMT markers……………………………………….…27
Over-expression level of COX1 protein affected some proliferation markers……………………………..…28
Figure………………………………………………………30
Figure 1.Micro-Western Array (MWA) is an antibody-based modified reverse phase array composes of a GeSim Nanoplotter arrayer, a GE multiphor, and a Licor Odyssey scanner………………………………30
Figure 2.Using high-throughput Micro-Western Array (MWA) to built up protein expression profile database……………………………………………….31
Figure 3.Raw data of RWPE1、PZ-HPV7 and CA-HPV10 by micro western blot…………………...32
Figure 4.Raw data of RWPE1、104S and 104R1 by micro western blot………………................................33
Figure 5.Raw data of RWPE1、Du145 and PC3 by micro western blot…………………………………………...34
Figure 6.Different protein expression level as assayed by MWA in the normal human prostate epithelial cell lines (RWPE-1, PZ-HPV-7) vs. malignant human prostate cancer cell lines (PC-3, DU-145, CA-HPV-10, LNCaP 104-S, LNCaP 104-R1) as shown by the heat map…………………… ……………………………35
Figure 7.Protein expression as determined by Micro Western Array (MWA) and conventional Western blot………………….. ………………………………36
Figure 8.Protein expression as determined by Micro Western Array (MWA) and conventional Western blot…………………...................................................37
Figure 9.Protein expression as determined by Micro Western Array (MWA) and conventional Western blot…………………. ………………………………38
Figure 10.The effect of over expression COX1 in PC3 on cellular proliferation……………………………..39
Figure 11.The effect of overexpression COX1 in PC3 on cell motility as determined by wound healing assay…………………….............................................40
Figure 12.Effects of over-expression of COX1 on migration and invas………………………………...…41
Figure 13.Overexpression of COX1 affected protein abundance of some EMT markers in PC-3 cells……………………………………………….42
Figure 14.Overexpression of COX1 affected protein abundance of some proliferation markers in PC-3 cells.……………………………………………..……43
Reference…………………………………………….……44
.
1.Komarova NL. “Spatial stochastic models of cancer: fitness, migration, invasion”, Math Biosci Eng, Vol.10, No.3 , 2013 , pp.761-775.
2.Wells A. “Tumor invasion: role of growth factor-induced cell motility”, AdvCancer Res, Vol.78 , 2000 , pp. 31-101.
3.Isabel Heidegger,“Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis Oncotarget”, Advance Publications, 2014
4.Core instrument center in national health research institutes http://core.nhri.org.tw/webcore/webcont!Cont.action?news_id=201106301309411459895&lab_id=pccore
5.Martin GA, Bollag G, McCormick F, Abo A (June 1995). "A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20", EMBO J ,Vol.14 , No.9, 1970–8. PMC 398296.PMID 7744004.
6.Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM (August 1995). "Regulation of human leukocyte p21-activated kinases through G protein—coupled receptors".Science,Vol.269, pp.221–3.
7. "Entrez Gene: PAK2 p21 (CDKN1A)-activated kinase 2".
8. Dev KK, Nishimune A, Henley JM, Nakanishi S (July 1999). "The protein kinase C alpha binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits". Neuropharmacology , Vol.38 , No.5 , pp.635–44.
9. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M (December 1999). "The DNA sequence of human chromosome 22", Nature, Vol.402, No.6761, pp.489–95.
10. "Entrez Gene: PICK1 protein interacting with PRKCA 1".
11. Sato K, Mano H, Ariyama T, Inazawa J, Yazaki Y, Hirai H (November 1994). "Molecular cloning and analysis of the human Tec protein-tyrosine kinase". Leukemia , Vol.8, No.10, pp. 1663–72.
12. "Entrez Gene: TEC tec protein tyrosine kinase".
13. Suzuki, Nobuchika, Nakamura Susumu, Mano Hiroyuki, KozasaTohru (January 2003)."Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF". Proc. Natl. Acad, Sci. U.S.A. (United States), Vol.100, No.2 , pp.733–8.
14. Yokoyama C, Tanabe T (December 1989). "Cloning of human gene encoding prostaglandin endoperoxide synthase and primary structure of the enzyme". Biochem.Biophys.Res.Commun,Vol.165,No.2,pp.888–94.
15. Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA (June 1991). "Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment", FASEB J, Vol.5, No.9, pp. 2304–12.
16.MedicineNet.com[Internet].NewYork:WebMD.]Availablefrom:http://www.medterms.com/script/main/art.asp?articlekey=7123, 2003~2010
17.Bruton LL, Lazo JS, Parker KL,” Goodman & Gilman’s: the pharmacological basis of therapeutics”, 11th edition. New York: McGraw-Hill, 2006, pp.661.
18.AWS-Law.com[Internet].Florida.Available from:http://www.aws-law.com/about.asp , 2010
19. NIH Public Access. “Nat Methods.Author manuscript; available in PMC, Nat Methods., Vol.7, No.2, 2010, pp.148–155.
20. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3), Invest Urol , Vol.17, pp.16-23.
21. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978), “Isolation of a human prostate carcinoma cell line (DU 145)”, Int J Cancer, Vol. 21, pp.274-281.
22.BCRC number: 60348 (DU-145),
https://catalog.bcrc.firdi.org.tw/BSAS_cart/controller?event=SEARCH&bcrc_no=60348&type_id=4&keyword=
23.BCRC number: 60122 (PC-3),
https://catalog.bcrc.firdi.org.tw/BSAS_cart/controller?event=SEARCH&bcrc_no=60122&type_id=4&keyword=PC-3
24. Pulukuri SM, Gondi CS, Lakka SS, et al. (October 2005). "RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo". J. Biol. Chem, Vol.280, No.43, pp.36529–40.
25. RWPE-1 (ATCC®CRL-11609™), http://www.atcc.org/products/all/CRL-11609.aspx#generalinformation
26. PZ-HPV-7 (ATCC® CRL-2221™),
http://www.atcc.org/products/all/CRL-2221.aspx
27.CA-HPV-10 (ATCC® CRL-2220™),
http://www.atcc.org/products/all/CRL-2220.aspx#culturemethod

28. Bello D, et al.,”Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18”, Carcinogenesis, Vol.18, 1997, pp. 1215-1223.
29. Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, et al. (1980), “The LNCaP cell line--a new model for studies on human prostatic carcinoma”, Prog Clin Biol Res , Vol.37, pp.115-132.
30. Kokontis J, Takakura K, Hay N, Liao S (1994),” Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation”, Cancer Res ,Vol.54 , pp.1566-1573.
31. Kokontis JM, Hay N, Liao S (1998), “Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest”, Mol Endocrinol , Vol.12 , pp.941-953.
32. Kokontis JM, Hsu S, Chuu CP, Dang M, Fukuchi J, et al. (2005), “Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity”, Prostate , Vol.65 , pp.287-298.
33. Ching-Yu Lin,ChiehHuo, Li-KuoKuo, Chuu CP. (2013), Cholestane-3β, 5α, 6β-triol Suppresses Proliferation, Migration, and Invasion of Human Prostate Cancer Cells.
34. Lin HP, Jiang SS, Chuu CP (2012), Caffeic Acid Phenethyl Ester Causes p21 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells.
(此全文未開放授權)
完整論文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *