帳號:guest(3.143.168.172)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏廷忠
作者(外文):Yen, Ting-Chung
論文名稱(中文):鈣離子調控在慢性B型肝炎病毒誘發之第二型毛玻璃肝細胞中所扮演的生理意義
論文名稱(外文):Biological Significance of Store-Operated Calcium Entry in Type-II Ground Glass Hepatocytes during Chronic HBV Infection
指導教授(中文):王慧菁
指導教授(外文):Wang, Hui-Ching
口試委員(中文):王慧菁
洪瑞祥
邱文泰
口試委員(外文):Wang, Hui-Ching
Hung, Jui-Hsiang
Chiu, Wen-Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:101080582
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:53
中文關鍵詞:B型肝炎病毒毛玻璃肝細胞內質網壓力鈣池調控鈣離子流入非整倍體
外文關鍵詞:Hepatitis B virusGround glass hepatocytesER stressStore-operated calcium entryAneuploidy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:239
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
毛玻璃肝細胞為帶有B型肝炎病毒大表面蛋白的肝細胞,在肝硬化病人中被認為是肝癌發生的前兆。在慢性B型肝炎病毒感染晚期中,第二型毛玻璃肝細胞與肝癌的產生有極大的關係,其帶有preS2突變大表面蛋白(preS2-LHBs)並分佈在細胞的邊緣。在此研究中,主要探討造成preS2-LHBs形成邊緣分佈的原因以及其生理意義。我們發現帶有preS2-LHBs的細胞中內質網會被徵召到細胞膜附近。此徵召是由鈣池調控鈣離子進入(store-operated calcium entry, SOCE)機制中的兩個元件所調節:分別位於內質網和細胞膜的蛋白質STIM1與Orai1。藉由preS2-LHBs或其他化學誘導物所造成內質網壓力就可以促使位於內質網上的STIM1向細胞膜移動而與其上的Orai1結合。STIM1-Orai1的連接促使鈣離子經由SOCE機制的調控而進入細胞內,進而造成preS2-LHBs細胞中的鈣離子濃度增加。然而我們亦發現SOCE會活化鈣離子依賴性鈣蛋白酶(calpain),進而促使中心體過度生成。帶有額外中心體的細胞會誘導多極性分裂,最後造成染色體不穩定。總結,我們發現B型肝炎病毒大表面蛋白的邊緣分佈代表著在第二型毛玻璃肝細胞中SOCE的活化,進而藉由中心體過度生成以及多極性分裂所誘發的染色體不穩定促進腫瘤生成。
Ground glass hepatocytes (GGHs) are characterized by hepatocytes expressing abundant HBV large surface proteins (LHBs) in the cytoplasm and recognized as preneoplastic lesions in cirrhotic livers. Particularly, the type-II GGHs with marginal distribution of preS2 mutant LHBs are implicated in the pathogenesis of hepatocellular carcinoma. In the present study, the cause and consequences for the marginal recruitment of preS2-LHBs in hepatocytes are explored. We found that endoplasmic reticulum (ER) was recruited towards plasma membrane in hepatocytes carrying preS2-LHBs. This recruitment was mediated by the interaction between two components of the store-operated calcium entry (SOCE) machinery: the ER-resident protein STIM1 and the plasma membrane-resident calcium channel protein Orai1. The activation of ER stress, by preS2-LHBs or chemical inducers, provokes the recruitment of ER-resident STIM1 towards plasma membrane-resident Orai1. The STIM1-Orai1 connection initiated SOCE-mediated calcium influx and thereby increased the subcellular calcium concentration in hepatocytes expressing preS2-LHBs. For the consequence of SOCE activation, we demonstrated that SOCE promoted centrosome overduplication through calcium-dependent calpain proteases. Hepatocytes carrying extra centrosomes underwent multipolar division and hence chromosome instability. We conclude that marginal distribution of LHBs reflects the activation of SOCE machinery in the type-II GGHs. The activation of SOCE machinery may promote tumorigenesis through the induction of chromosome instability via centrosome overduplication and multipolar division.
Abstract.........................................................................................................1
中文摘要.........................................................................................................2
1. Introduction...............................................................................................3
1.1 Hepatitis B virus (HBV) and hepatocellular carcinoma (HCC)......................3
1.2 Ground glass hepatocyte (GGH) and pre-S mutant....................................4
1.3 ER stress...................................................................................................5
1.4 Store-operated calcium entry (SOCE) and intracellular calcium homeostasis ......................................................................................................................6
1.5 Centrosome overduplication and multipolar division................................7
1.6 Aneuploidy and micronuclei formation are the evidence of chromosomal instability......................................................................................................8
2. Hypothesis and specific aims..................................................................10
3. Materials and Methods.............................................................................11
4. Results.....................................................................................................16
4.1 PreS2-LHBs displayed marginal distribution similar to HBsAg in type-II GGHs..........................................................................................................16
4.2 ER recruitment to the cell periphery in hepatocytes expressing preS2-LHBs ..................................................................................................................16
4.3 PreS2-LHBs promotes ER-plasma membrane connections through ER stress ..................................................................................................................17
4.4 Calcium homeostasis is disrupted in preS2-LHBs cells..........................18
4.5 STIM1-Orai1 interaction leads to marginal recruitment of preS2-LHBs ..................................................................................................................18
4.6 Constitutive activation of SOCE machinery results from [Ca2+]ER insufficiency..................................................................................................19
4.7 SOCE promotes centrosome overduplication and multipolar division.......20
4.8 Abnormalities of centrosome number and cell division lead to chromosome instability.....................................................................................................21
4.9 The inhibition of SOCE machinery suppresses chromosome instability in LHBs-positive cells.......................................................................................22
5. Discussion................................................................................................23
6. Figures.....................................................................................................26
Figure 1. Different HBsAg staining pattern in cirrhotic livers.........................26
Figure 2. Subcellular distribution of WT-LHBs and preS2-LHBs in NeHepLxHT cells.............................................................................................................27
Figure 3. Relative distribution of plasma membrane (PM), endoplasmic reticulum (ER) and LHBs...............................................................................28
Figure 4. Increased ER-PM connections under ER stress...............................29
Figure 5. Using GRP78 as ER marker to further confirm ER-PM connection...................................................................................................30
Figure 6. Intracellular calcium concentration of ctrl, WT-LHBs, preS2-LHBs cells.............................................................................................................31
Figure 7. The activation of SOCE and marginal recruitment of STIM1 under ER stress..........................................................................................................32
Figure 8. Marginal distribution of preS2-LHBs cells was disrupted upon STIM1 depletion....................................................................................................33
Figure 9. The marginal recruitment of STIM1 and activation of SOCE machinery in type-II GGHs..........................................................................................34
Figure 10A. STIM1-Orai1 interaction is regulated by ER calcium storage in preS2-LHBs cells.......................................................................................35
Figure 10B. STIM1-Orai1 interaction is regulated by ER calcium storage in WT-LHBs cells..........................................................................................36
Figure 11. LHBs promotes centrosome overduplication.............................37
Figure 12. Inhibition of calcium, ER stress, SOCE, calpain protease and STIM1 depletion suppress centrosome overduplication in preS2-LHBs cells ........38
Figure 13. Multipolar division results from ER stress-mediated centrosome overduplication ........................................................................................39
Figure 14. Inhibition of calcium, ER stress, SOCE and calpain protease reduce multipolar division in preS2-LHBs cells.....................................................40
Figure 15. Aneuploidy serves as the evidence of chromosome instability...41
Figure 16. Micronuclei formation works as another evidence of chromosome instability..................................................................................................42
Figure 17. Aneuploidy was relieved upon long-term inhibition of SOCE.....43
Figure 18. Micronuclei formation was suppressed upon persistent inhibition of SOCE..........................................................................................................44
Figure 19. Illustration of cause and consequence of marginal pattern in type-II GGHs..........................................................................................................45
7. Reference...............................................................................................46
8. Tables....................................................................................................51
1 Jemal, A. et al. Global cancer statistics. CA: a cancer journal for clinicians 61, 69-90, doi:10.3322/caac.20107 (2011).
2 Joachim Lupberger, E. H. Hepatitis B virus-induced oncogenesis. World Journal of Gastroenterology 13, 74-81 (2007).
3 Mittal, S. & El-Serag, H. B. Epidemiology of hepatocellular carcinoma: consider the population. Journal of clinical gastroenterology 47 Suppl, S2-6, doi:10.1097/MCG.0b013e3182872f29 (2013).
4 Ott, J. J., Stevens, G. A., Groeger, J. & Wiersma, S. T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 30, 2212-2219, doi:10.1016/j.vaccine.2011.12.116 (2012).
5 Lavanchy, D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 34 Suppl 1, S1-3 (2005).
6 Chen, D. S. Toward elimination and eradication of hepatitis B. Journal of gastroenterology and hepatology 25, 19-25, doi:10.1111/j.1440-1746.2009.06165.x (2010).
7 Locarnini, S. Molecular virology of hepatitis B virus. Seminars in liver disease 24 Suppl 1, 3-10, doi:10.1055/s-2004-828672 (2004).
8 Robinson, W. S. Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annual review of medicine 45, 297-323, doi:10.1146/annurev.med.45.1.297 (1994).
9 Hsu, T. et al. Activation of c-myc by woodchuck hepatitis virus insertion in hepatocellular carcinoma. Cell 55, 627-635 (1988).
10 Wang, H. C., Huang, W., Lai, M. D. & Su, I. J. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer science 97, 683-688, doi:10.1111/j.1349-7006.2006.00235.x (2006).
11 Hsieh, Y. H. et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25, 2023-2032, doi:10.1093/carcin/bgh207 (2004).
12 Seeger, C. & Mason, W. S. Hepatitis B virus biology. Microbiology and molecular biology reviews : MMBR 64, 51-68 (2000).
13 Hadziyannis, S., Gerber, M. A., Vissoulis, C. & Popper, H. Cytoplasmic hepatitis B antigen in "ground-glass" hepatocytes of carriers. Archives of pathology 96, 327-330 (1973).
14 Popper, H. The ground glass hepatocyte as a diagnostic hint. Human pathology 6, 517-520 (1975).
15 Su, I. J., Wang, H. C., Wu, H. C. & Huang, W. Y. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. Journal of gastroenterology and hepatology 23, 1169-1174, doi:10.1111/j.1440-1746.2008.05348.x (2008).
16 Wang, H. C. et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. The American journal of pathology 163, 2441-2449, doi:10.1016/S0002-9440(10)63599-7 (2003).
17 Fan, Y. F. et al. Identification of a pre-S2 mutant in hepatocytes expressing a novel marginal pattern of surface antigen in advanced diseases of chronic hepatitis B virus infection. Journal of gastroenterology and hepatology 15, 519-528 (2000).
18 Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. The Journal of clinical investigation 115, 2656-2664, doi:10.1172/JCI26373 (2005).
19 Hetz, C., Martinon, F., Rodriguez, D. & Glimcher, L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiological reviews 91, 1219-1243, doi:10.1152/physrev.00001.2011 (2011).
20 Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature cell biology 2, 326-332, doi:10.1038/35014014 (2000).
21 Wang, S. & Kaufman, R. J. The impact of the unfolded protein response on human disease. The Journal of cell biology 197, 857-867, doi:10.1083/jcb.201110131 (2012).
22 Leem, J. & Koh, E. H. Interaction between mitochondria and the endoplasmic reticulum: implications for the pathogenesis of type 2 diabetes mellitus. Experimental diabetes research 2012, 242984, doi:10.1155/2012/242984 (2012).
23 Vaca, L. SOCIC: the store-operated calcium influx complex. Cell calcium 47, 199-209, doi:10.1016/j.ceca.2010.01.002 (2010).
24 Roderick, H. L. & Cook, S. J. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nature reviews. Cancer 8, 361-375, doi:10.1038/nrc2374 (2008).
25 Soboloff, J., Rothberg, B. S., Madesh, M. & Gill, D. L. STIM proteins: dynamic calcium signal transducers. Nature reviews. Molecular cell biology 13, 549-565, doi:10.1038/nrm3414 (2012).
26 Hewavitharana, T., Deng, X., Soboloff, J. & Gill, D. L. Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell calcium 42, 173-182, doi:10.1016/j.ceca.2007.03.009 (2007).
27 Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Current biology : CB 18, 177-182, doi:10.1016/j.cub.2007.12.050 (2008).
28 Prosser, S. L., Straatman, K. R. & Fry, A. M. Molecular dissection of the centrosome overduplication pathway in S-phase-arrested cells. Molecular and cellular biology 29, 1760-1773, doi:10.1128/MCB.01124-08 (2009).
29 Bettencourt-Dias, M. & Glover, D. M. Centrosome biogenesis and function: centrosomics brings new understanding. Nature reviews. Molecular cell biology 8, 451-463, doi:10.1038/nrm2180 (2007).
30 Fukasawa, K. Centrosome amplification, chromosome instability and cancer development. Cancer letters 230, 6-19, doi:10.1016/j.canlet.2004.12.028 (2005).
31 Brodie, K. M. & Henderson, B. R. Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome: a role for the nuclear export signal, CRM1, and Aurora A kinase. The Journal of biological chemistry 287, 7701-7716, doi:10.1074/jbc.M111.327296 (2012).
32 Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851-854 (1999).
33 Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proceedings of the National Academy of Sciences of the United States of America 96, 2817-2822 (1999).
34 Mayor, T., Meraldi, P., Stierhof, Y. D., Nigg, E. A. & Fry, A. M. Protein kinases in control of the centrosome cycle. FEBS letters 452, 92-95 (1999).
35 Meraldi, P. & Nigg, E. A. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. Journal of cell science 114, 3749-3757 (2001).
36 Mussman, J. G. et al. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19, 1635-1646, doi:10.1038/sj.onc.1203460 (2000).
37 Saunders, W. Centrosomal amplification and spindle multipolarity in cancer cells. Seminars in cancer biology 15, 25-32, doi:10.1016/j.semcancer.2004.09.003 (2005).
38 Torres, E. M., Williams, B. R. & Amon, A. Aneuploidy: cells losing their balance. Genetics 179, 737-746, doi:10.1534/genetics.108.090878 (2008).
39 Patterson, D. Molecular genetic analysis of Down syndrome. Human genetics 126, 195-214, doi:10.1007/s00439-009-0696-8 (2009).
40 Tang, Y. C., Williams, B. R., Siegel, J. J. & Amon, A. Identification of aneuploidy-selective antiproliferation compounds. Cell 144, 499-512, doi:10.1016/j.cell.2011.01.017 (2011).
41 Luzhna, L., Kathiria, P. & Kovalchuk, O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Frontiers in genetics 4, 131, doi:10.3389/fgene.2013.00131 (2013).
42 Forment, J. V., Kaidi, A. & Jackson, S. P. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature reviews. Cancer 12, 663-670, doi:10.1038/nrc3352 (2012).
43 Gisselsson, D. Classification of chromosome segregation errors in cancer. Chromosoma 117, 511-519, doi:10.1007/s00412-008-0169-1 (2008).
44 Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochimica et biophysica acta 1786, 32-40, doi:10.1016/j.bbcan.2008.05.003 (2008).
45 Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937-950, doi:10.1016/j.cell.2005.04.009 (2005).
46 Reid, Y., Gaddipati, J. P., Yadav, D. & Kantor, J. Establishment of a human neonatal hepatocyte cell line. In vitro cellular & developmental biology. Animal 45, 535-542, doi:10.1007/s11626-009-9219-0 (2009).
47 Annunziata, I. & d'Azzo, A. Interorganellar membrane microdomains: dynamic platforms in the control of calcium signaling and apoptosis. Cells 2, 574-590, doi:10.3390/cells2030574 (2013).
48 Carrasco, S. & Meyer, T. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annual review of biochemistry 80, 973-1000, doi:10.1146/annurev-biochem-061609-165311 (2011).
49 Stefan, C. J., Manford, A. G. & Emr, S. D. ER-PM connections: sites of information transfer and inter-organelle communication. Current opinion in cell biology 25, 434-442, doi:10.1016/j.ceb.2013.02.020 (2013).
50 Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. The Journal of cell biology 174, 803-813, doi:10.1083/jcb.200604014 (2006).
51 Ames, R. S., Kost, T. A. & Condreay, J. P. BacMam technology and its application to drug discovery. Expert opinion on drug discovery 2, 1669-1681, doi:10.1517/17460441.2.12.1669 (2007).
52 Deniaud, A. et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285-299, doi:10.1038/sj.onc.1210638 (2008).
53 Gorlach, A., Klappa, P. & Kietzmann, T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxidants & redox signaling 8, 1391-1418, doi:10.1089/ars.2006.8.1391 (2006).
54 Kim, I., Xu, W. & Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature reviews. Drug discovery 7, 1013-1030, doi:10.1038/nrd2755 (2008).
55 Berna-Erro, A., Redondo, P. C. & Rosado, J. A. Store-operated Ca(2+) entry. Advances in experimental medicine and biology 740, 349-382, doi:10.1007/978-94-007-2888-2_15 (2012).
56 Shen, W. W., Frieden, M. & Demaurex, N. Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1 (STIM1) de-oligomerization and termination of store-operated Ca2+ entry. The Journal of biological chemistry 286, 36448-36459, doi:10.1074/jbc.M111.269415 (2011).
57 Carrasco, S. & Meyer, T. Cracking CRAC. Nature cell biology 12, 416-418, doi:10.1038/ncb0510-416 (2010).
58 Malli, R., Naghdi, S., Romanin, C. & Graier, W. F. Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. Journal of cell science 121, 3133-3139, doi:10.1242/jcs.034496 (2008).
59 Carafoli, E. The calcium-signalling saga: tap water and protein crystals. Nature reviews. Molecular cell biology 4, 326-332, doi:10.1038/nrm1073 (2003).
60 Kanwar, Y. S. & Sun, L. Shuttling of calcium between endoplasmic reticulum and mitochondria in the renal vasculature. American journal of physiology. Renal physiology 295, F1301-1302, doi:10.1152/ajprenal.90506.2008 (2008).
61 Mascia, F., Denning, M., Kopan, R. & Yuspa, S. H. The black box illuminated: signals and signaling. The Journal of investigative dermatology 132, 811-819, doi:10.1038/jid.2011.406 (2012).
62 Khorchid, A. & Ikura, M. How calpain is activated by calcium. Nature structural biology 9, 239-241, doi:10.1038/nsb0402-239 (2002).
63 Sorimachi, H., Ishiura, S. & Suzuki, K. Structure and physiological function of calpains. The Biochemical journal 328 ( Pt 3), 721-732 (1997).
64 Carragher, N. O., Fincham, V. J., Riley, D. & Frame, M. C. Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. The Journal of biological chemistry 276, 4270-4275, doi:10.1074/jbc.M008972200 (2001).
65 Glading, A., Lauffenburger, D. A. & Wells, A. Cutting to the chase: calpain proteases in cell motility. Trends in cell biology 12, 46-54 (2002).
66 Moldoveanu, T. et al. A Ca(2+) switch aligns the active site of calpain. Cell 108, 649-660 (2002).
67 Welm, A. L. et al. C/EBPalpha is required for proteolytic cleavage of cyclin A by calpain 3 in myeloid precursor cells. The Journal of biological chemistry 277, 33848-33856, doi:10.1074/jbc.M204096200 (2002).
68 Delmas, C. et al. MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. The Journal of biological chemistry 278, 12443-12451, doi:10.1074/jbc.M209523200 (2003).
69 Wang, L. H., Huang, W., Lai, M. D. & Su, I. J. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis 33, 466-472, doi:10.1093/carcin/bgr296 (2012).
70 Wang, H. C. et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41, 761-770, doi:10.1002/hep.20615 (2005).
71 Hung, J. H. et al. Induction of Bcl-2 expression by hepatitis B virus pre-S2 mutant large surface protein resistance to 5-fluorouracil treatment in Huh-7 cells. PloS one 6, e28977, doi:10.1371/journal.pone.0028977 (2011).
72 Hildt, E. & Hofschneider, P. H. The PreS2 activators of the hepatitis B virus: activators of tumour promoter pathways. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 154, 315-329 (1998).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *