帳號:guest(3.14.6.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉玉涵
作者(外文):Liu, Yu-Han
論文名稱(中文):包氏不動桿菌產生之class D碳青黴烯水解酶OXA-82及OXA-66之比較
論文名稱(外文):Comparison of carbapenem hydrolyzing class D β-lacatamases OXA-82 and OXA-66 from clinical isolates of Acinetobacter baumannii
指導教授(中文):李寬容
指導教授(外文):Lee, Kuan-Rong
口試委員(中文):李寬容
陳德禮
蘇世強
口試委員(外文):Kuan-Rong Lee
Te-Li Chen
Shey-Chaing Su
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080531
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:65
中文關鍵詞:包氏不動桿菌carbapenem 抗藥性carbapenem 水解酶碳青黴烯水解酶
外文關鍵詞:Acinetobacter baumanniicarbapenem resistancecarbapenemaseβ-lacatamases
相關次數:
  • 推薦推薦:0
  • 點閱點閱:172
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
包氏不動桿菌為一非葡萄糖發酵性之格蘭氏陰性菌,為院內感染的其中一種病原菌。在免疫力低下患者造成的死亡率相當高。造成此菌盛行的其中一個原因,可能來自於其快速產生多重抗藥性的能力。Carbapenem 類乃是目前治療革蘭氏陰性菌感染症最強效的抗生素,然而由於包氏不動桿菌對此類抗生素產生抗藥性的情形日益嚴重,已使得有效治療其感染症的抗生素選擇越來越少。因此尋求新的抗生素治療有其必要性。近年來,學者發現單獨 carbapenem hydrolyzing class D beta-lactamases (CHDLs) 基因過度表現即可造成對 carbapenem 高度的抗藥性,而且幾乎所有 carbapenem 抗藥性包氏不動桿菌都帶有這些 CHDL 基因。因此,對carbapenem抗藥性包氏不動桿菌的策略之一,就是有效抑制CHDL。欲找到可能的抑制 CHDL方式,要先了解其水解carbapenem的機制及活性位置 (active site)。
我們研究團隊發現帶有ISAba1-blaOXA-51-like的質體是造成臺灣地區包氏不動桿菌 carbapenem 抗藥性的主因之一,ISAba1-blaOXA-51-like 是啟動子 (promotor) 可使基因 blaOXA-51-like 大量表現 。然而吾人對於OXA-51-like水解 carbapenem 的特性所知卻十分有限。本研究利用比較兩種OXA-51-like水解酵素,它們僅僅相差一個胺基酸 (Leu167Val) 卻造成不同程度的 carbapenem 抗藥性,帶有 ISAba1-blaOXA-82 的菌株比基因 ISAba1-blaOXA-66對於抗生素美羅培南具較高抗藥性。此研究中,我們探討兩菌株對 carbapenem 產生不同程度抗藥性的機制。抗生素美羅培南對於兩菌株 ATCC15151 (pYMAb2 ISAba1-blaOXA-66) 與 ATCC15151 (pYMAb2 ISAba1-blaOXA-82)有不同的最小抑菌濃度分別為2 與 24 μg/mL,前者對抗生素具敏感性,後者具抗藥性。西方點墨法實驗數據顯示,於短時間反應 (2 – 8 hr) ATCC15151 (pYMAb2 ISAba1-blaOXA-66) 產生oxacillinase 的量約為OXA-82 的 1.5-2 倍;觀測較長的反應時間 (8 – 16 hr),ATCC15151 (pYMAb2 ISAba1-blaOXA-82) 產生oxacillinase 的量約為 OXA-66 的 1.2 倍。液相層析串聯質譜儀分析、酵素動力學數據顯示,OXA-66 水解效率 (hydrolytic efficiency, kcat/Km = 0.04 μM-1sec-1) 比 OXA-82 ((hydrolytic efficiency, kcat/Km = 0.01 μM-1sec-1)好。改良賀治實驗中,抑菌環的變化了解 OXA-82 水解抗生素美羅培南的量比 OXA-66 多。於 mRNA 即時聚合酶鏈反應實驗中,兩菌在實驗結果中無顯著性差異。觀測三維模擬立體結構,兩酵素蛋白無結構上的差異。從實驗數據中了解具較低 MIC 數值的菌株對於抗生素會表現出較高的水解效率。OXA-82 水解美羅培南的效率較 OXA-66 差,ATCC15151 (pYMAb2 ISAba1-blaOXA-82) 產生 OXA-82 較 ATCC15151 (pYMAb2 ISAba1-blaOXA-66) 慢,但 ATCC15151 (pYMAb2 ISAba1-blaOXA-82) 製造OXA-82 的蛋白表現量多於 OXA-66,對於抗生素有較高的忍受度 (tolerance)。這些實驗結果闡述為何同為 class D OXA-51-like菌株ATCC15151 (pYMAb2 ISAba1-blaOXA-82) MIC 數值高於 ATCC15151 (pYMAb2 ISAba1-blaOXA-66) 的原因。
Acinetobacter baumannii is a non-fermenting Gram negative bacterium and one of the leading pathogens of nosocomial infection worldwide. The carbapenem resistance has been developed in a extremely speed among A. baumannii strains, which has severely compromised the therapeutic options. Therefore, new antimicrobials that are effective against CRAb (carbapenem resistant A. baumannii) are urgently needed. Recently, several researches have shown that overproduction of carbapenem hydrolyzing class D beta-lactamases (CHDLs) by itself can confer a high level of carbapenem resistance in A. baumannii, and these CHDLs are found in nearly all CRAb. Inhibition of CHDLs is among one of the effective strategies to settle CRAb infection. This approach often identifies chemicals that target on the active site of the enzymes.
We have firstly identified the plasmid bearing ISAba1-blaOXA-51-like has become one of the major carbapenem resistance determinants in A. baumannii in Taiwan. Insertion sequence ISAba1 acts as a strong promoter to enhance the expression of blaOXA-51-like. However, the carbapenem hydrolyzing characteristics of OXA-51-like carbapenemase have not been elucidated. We have found that different OXA-51-like enzymes contribute to carbapenem resistance in a different extent. The amino acid sequences are the same between ISAba1-blaOXA-66 and ISAba1-blaOXA-82 except for a Leu167Val amino acid substitution. The transformants carrying the ISAba1-blaOXA-82 would exhibit a much higher level of carbapenem resistance than those carrying ISAba1-blaOXA-66. In this study, we investigated the mechanism of difference in contribution to meropenem resistance between two blaOXA-51-like alleles. The minimum inhibitory concentrations (MIC) of two A.baumannii isolates, ATCC15151 (pYMAb2 ISAba1-blaOXA-66) and ATCC15151 (pYMAb2 ISAba1-blaOXA-82), were 2 and 24 μg/mL for meropenem respectively. The former was susceptible; the latter was resistant to antibiotic. The results of western blotting were shown that oxacillinase produced by ATCC15151 (pYMAb2 ISAba1-blaOXA-66) was approximately 1.5-2 times quantity of the OXA-82 with the short-time reaction (2 - 8 hr). ATCC15151 (pYMAb2 ISAba1-blaOXA-82) produced about 1.2 times quantity of oxacillinase than OXA-66 with the long-time reaction (8 - 16 hr). Hydrolytic efficiency of OXA-66 (kcat/Km = 0.04 μM-1sec-1) was greater than OXA-82 (kcat/Km = 0.01 μM-1sec-1) in Q-TOF LC/MS spectra, enzyme kinetics. The zone of inhibition with modified Hodge test showed OXA-82 hydrolyzed more meropenem than OXA-66. There was no statistically significant difference with mRNA expression between two strains. There was no different structure with molecular modeling between OXA-66 and OXA-82. The strain was possessed the lower MIC value but the oxacillinase was exhibited higher catalytic efficiency for antibiotics. The resistant strain produced more quantity of enzyme to resist and tolerate higher concentration of antibiotic. The results were elaborated the reason why the class D OXA-51-like group strains ATCC15151 (pYMAb2 ISAba1-blaOXA-82) was possessed higher MIC value than ATCC15151 (pYMAb2 ISAba1-blaOXA-66).
1. Abstract.................... 1-4
2. Introduction................ 5-10
3. Materials and Methods....... 11-21
4. Results..................... 22-28
5. Tables and Figures.......... 29-54
6. Discussion.................. 55-57
7. Reference................... 58-65
1. Dijkshoorn, L., A. Nemec, and H. Seifert, An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol, 2007. 5(12): p. 939-51.
2. Knapp, S., et al., Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med, 2006. 173(1): p. 122-9.
3. Bergogne-Berezin, E. and K.J. Towner, Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev, 1996. 9(2): p. 148-65.
4. Mahgoub, S., J. Ahmed, and A.E. Glatt, Underlying characteristics of patients harboring highly resistant Acinetobacter baumannii. Am J Infect Control, 2002. 30(7): p. 386-90.
5. Garcia-Garmendia, J.L., et al., Mortality and the increase in length of stay attributable to the acquisition of Acinetobacter in critically ill patients. Crit Care Med, 1999. 27(9): p. 1794-9.
6. Fierobe, L., et al., An outbreak of imipenem-resistant Acinetobacter baumannii in critically ill surgical patients. Infect Control Hosp Epidemiol, 2001. 22(1): p. 35-40.
7. Bou, G., et al., PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clin Microbiol Infect, 2000. 6(12): p. 635-43.
8. Scerpella, E.G., et al., Nosocomial outbreak caused by a multiresistant clone of Acinetobacter baumannii: results of the case-control and molecular epidemiologic investigations. Infect Control Hosp Epidemiol, 1995. 16(2): p. 92-7.
9. Husni, R.N., et al., Risk factors for an outbreak of multi-drug-resistant Acinetobacter nosocomial pneumonia among intubated patients. Chest, 1999. 115(5): p. 1378-82.
10. Peleg, A.Y., H. Seifert, and D.L. Paterson, Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev, 2008. 21(3): p. 538-82.
11. Reinert, R.R., et al., Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother, 2007. 60(5): p. 1018-29.
12. Perez, F., et al., Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother, 2007. 51(10): p. 3471-84.
13. Liang-Yu, C., et al., Difference in imipenem, meropenem, sulbactam, and colistin nonsusceptibility trends among three phenotypically undifferentiated Acinetobacter baumannii complex in a medical center in Taiwan, 1997-2007. J Microbiol Immunol Infect, 2011.
14. Song, J.Y., et al., Clinical and microbiological characterization of carbapenem-resistant Acinetobacter baumannii bloodstream infections. J Med Microbiol, 2011. 60(Pt 5): p. 605-11.
15. Riccio, M.L., et al., Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother, 2000. 44(5): p. 1229-35.
16. Chu, Y.W., et al., IMP-4, a novel metallo-beta-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother, 2001. 45(3): p. 710-4.
17. Livermore, D.M., Acquired carbapenemases. J Antimicrob Chemother, 1997. 39(6): p. 673-6.
18. Afzal-Shah, M., N. Woodford, and D.M. Livermore, Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother, 2001. 45(2): p. 583-8.
19. Donald, H.M., et al., Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother, 2000. 44(1): p. 196-9.
20. Quale, J., et al., Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis, 2003. 37(2): p. 214-20.
21. Clark, R.B., Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33-36 kDa outer membrane protein. J Antimicrob Chemother, 1996. 38(2): p. 245-51.
22. Gehrlein, M., et al., Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy, 1991. 37(6): p. 405-12.
23. Bou, G., et al., Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of beta-lactamases. J Clin Microbiol, 2000. 38(9): p. 3299-305.
24. Costa, S.F., et al., Outer-membrane proteins pattern and detection of beta-lactamases in clinical isolates of imipenem-resistant Acinetobacter baumannii from Brazil. Int J Antimicrob Agents, 2000. 13(3): p. 175-82.
25. Poirel, L. and P. Nordmann, Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect, 2006. 12(9): p. 826-36.
26. Lee, Y.T., et al., Differences in phenotypic and genotypic characteristics among imipenem-non-susceptible Acinetobacter isolates belonging to different genomic species in Taiwan. Int J Antimicrob Agents, 2009. 34(6): p. 580-4.
27. Chen, T.L., et al., Acquisition of a plasmid-borne blaOXA-58 gene with an upstream IS1008 insertion conferring a high level of carbapenem resistance to Acinetobacter baumannii. Antimicrob Agents Chemother, 2008. 52(7): p. 2573-80.
28. Chen, T.L., et al., Contribution of a plasmid-borne blaOXA-58 gene with its hybrid promoter provided by IS1006 and an ISAba3-like element to beta-lactam resistance in acinetobacter genomic species 13TU. Antimicrob Agents Chemother, 2010. 54(8): p. 3107-12.
29. Bertini, A., et al., Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother, 2007. 51(7): p. 2324-8.
30. Chen, T.L., et al., Emergence and Distribution of Plasmids Bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob Agents Chemother, 2010. 54(11): p. 4575-81.
31. Joung, M.K., et al., Impact of inappropriate antimicrobial therapy on outcome in patients with hospital-acquired pneumonia caused by Acinetobacter baumannii. J Infect, 2010. 61(3): p. 212-8.
32. Kwon, K.T., et al., Impact of imipenem resistance on mortality in patients with Acinetobacter bacteraemia. J Antimicrob Chemother, 2007. 59(3): p. 525-30.
33. Garnacho-Montero, J. and R. Amaya-Villar, Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr Opin Infect Dis, 2010. 23(4): p. 332-9.
34. Karageorgopoulos, D.E., et al., Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. J Antimicrob Chemother, 2008. 62(1): p. 45-55.
35. Gordon, N.C. and D.W. Wareham, A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J Antimicrob Chemother, 2009. 63(4): p. 775-80.
36. Maragakis, L.L. and T.M. Perl, Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis, 2008. 46(8): p. 1254-63.
37. Karageorgopoulos, D.E. and M.E. Falagas, Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis, 2008. 8(12): p. 751-62.
38. Bou, G., et al., Design, synthesis, and crystal structures of 6-alkylidene-2'-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase. J Am Chem Soc, 2010. 132(38): p. 13320-31.
39. Drawz, S.M., et al., Penicillin sulfone inhibitors of class D beta-lactamases. Antimicrob Agents Chemother, 2010. 54(4): p. 1414-24.
40. Nicolas-Chanoine, M.H., Impact of beta-lactamases on the clinical use of beta-lactam antibiotics. Int J Antimicrob Agents, 1996. 7 Suppl 1: p. S21-6.
41. Ambler, R.P., The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci, 1980. 289(1036): p. 321-31.
42. Gazouli, M., et al., Sequence of the gene encoding a plasmid-mediated cefotaxime-hydrolyzing class A beta-lactamase (CTX-M-4): involvement of serine 237 in cephalosporin hydrolysis. Antimicrob Agents Chemother, 1998. 42(5): p. 1259-62.
43. Concha, N.O., et al., Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure, 1996. 4(7): p. 823-36.
44. Meneksedag, D., et al., Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol Chem, 2013. 43: p. 1-10.
45. Cuzon, G., et al., Probe ligation and real-time detection of KPC, OXA-48, VIM, IMP, and NDM carbapenemase genes. Diagn Microbiol Infect Dis, 2013. 76(4): p. 502-5.
46. Mammeri, H., et al., Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC beta-lactamases. Antimicrob Agents Chemother, 2010. 54(11): p. 4556-60.
47. Verma, V., et al., Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D beta-lactamase from Acinetobacter baumannii. J Biol Chem, 2011. 286(43): p. 37292-303.
48. Naas, T. and P. Nordmann, OXA-type beta-lactamases. Curr Pharm Des, 1999. 5(11): p. 865-79.
49. Heritier, C., et al., Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother, 2005. 49(10): p. 4174-9.
50. Heritier, C., L. Poirel, and P. Nordmann, Genetic and biochemical characterization of a chromosome-encoded carbapenem-hydrolyzing ambler class D beta-lactamase from Shewanella algae. Antimicrob Agents Chemother, 2004. 48(5): p. 1670-5.
51. Poirel, L., C. Heritier, and P. Nordmann, Chromosome-encoded ambler class D beta-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob Agents Chemother, 2004. 48(1): p. 348-51.
52. Alksne, L.E. and B.A. Rasmussen, Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon. J Bacteriol, 1997. 179(6): p. 2006-13.
53. Girlich, D., T. Naas, and P. Nordmann, Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2004. 48(6): p. 2043-8.
54. Rasmussen, B.A., et al., Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob Agents Chemother, 1994. 38(9): p. 2078-85.
55. Evans, B.A. and S.G. Amyes, OXA beta-lactamases. Clin Microbiol Rev, 2014. 27(2): p. 241-63.
56. Brown, S., H.K. Young, and S.G. Amyes, Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect, 2005. 11(1): p. 15-23.
57. Lee, Y.T., et al., First identification of blaOXA-51-like in non-baumannii Acinetobacter spp. J Chemother, 2009. 21(5): p. 514-20.
58. Lee, Y.T., et al., Emergence of carbapenem-resistant non-baumannii species of Acinetobacter harboring a blaOXA-51-like gene that is intrinsic to A. baumannii. Antimicrob Agents Chemother, 2012. 56(2): p. 1124-7.
59. Walther-Rasmussen, J. and N. Hoiby, OXA-type carbapenemases. J Antimicrob Chemother, 2006. 57(3): p. 373-83.
60. Dolzani, L., et al., Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J Clin Microbiol, 1995. 33(5): p. 1108-13.
61. Zander, E., et al., Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. J Antimicrob Chemother, 2013. 68(2): p. 308-11.
62. Soroka, D., et al., Characterization of broad-spectrum Mycobacterium abscessus class A beta-lactamase. J Antimicrob Chemother, 2014. 69(3): p. 691-6.
63. Bae, I.K., et al., A novel ceftazidime-hydrolysing extended-spectrum beta-lactamase, CTX-M-54, with a single amino acid substitution at position 167 in the omega loop. J Antimicrob Chemother, 2006. 58(2): p. 315-9.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *