帳號:guest(18.222.69.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹益愷
作者(外文):Chan, yi kai
論文名稱(中文):微量Cu-Sn與Ge對Fe-Cr抗蝕行為研究
論文名稱(外文):Anticorrosion Behavior of Fe-Cr Microalloyed with Cu-Sn and Ge
指導教授(中文):吳振名
陳瑞凱
口試委員(中文):薛立人
洪健龍
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031610
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:237
中文關鍵詞:腐蝕抗蝕行為不鏽鋼銅錫微量添加
外文關鍵詞:corrosionanticorrosionstainless steelgecu-snmicroalloying
相關次數:
  • 推薦推薦:0
  • 點閱點閱:109
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以「同時添加微量Cu與Sn」與「微量添加Ge」,微合金化肥粒鐵不鏽鋼,利用線性極化法LSV、阻抗頻譜法EIS、循環伏安法CV、開路電位法OCP等電化學量測,觀察合金的抗蝕行為;利用浸泡前後的金相及成分分析,觀察腐蝕後合金微結構與腐蝕液中的元素溶解量;再利用ESCA及AES,分析合金鈍化膜組成;綜合評估微合金化後Fe-Cr合金(以下簡稱本合金)的抗蝕行為。
本合金在硫酸中的LSV結果顯示,Cu-Sn微合金化,雖然可以提升活性區抗腐蝕能力,促進鈍化膜生成,但卻使鈍化電流上升;Ge微合金化,則可以提升鈍化膜穩定性。硫酸中的EIS顯示,Cu-Sn微合金化,使鈍化膜厚度下降,阻抗值變小;Ge微合金化,使鈍化膜厚度下降,但阻抗值變大,顯示鈍化膜型態有因Ge添加而改變。硫酸中的OCP顯示,添加Cu-Sn對於合金鈍化膜穩定性沒有明顯趨勢;添加Ge對於鈍化膜穩定性則有明顯提升。腐蝕後金相與成分分析,顯示合金在硫酸中屬均勻腐蝕,添加Cu-Sn使合金腐蝕更為嚴重;添加Ge使鉻氧化層的緻密度提升,不易腐蝕。硫酸鈍化膜的ESCA與AES分析,顯示鈍化膜主要由Fe3O4, FeO/Fe2O3, Cr2O3, CuO, SnO2, GeO2等氧化物組成,無論添加Cu-Sn或Ge,皆會使鈍化膜厚度減少,組成結構改變。
在氯化鈉中的LSV顯示,Cu-Sn添加對合金抗腐蝕行為影響不明顯;Ge使跨壓增大、孔蝕電位上升、腐蝕電流密度降低、鈍化電流密度降低,因此提升合金耐蝕力。氯化鈉中的EIS顯示,添加Cu-Sn沒有明顯趨勢;添加Ge提高鈍化膜阻抗,且當添加量超過一定值後,會有離子擴散現象。氯化鈉中的CV呈現正遲滯環,顯示有孔蝕現象,鈍化膜修復能力較差。添加Cu-Sn後,使合金鈍化膜修復能力變差;添加Ge後,合金鈍化膜修復能力變好。氯化鈉浸泡後,浸泡液成分分析顯示,添加Cu-Sn後,僅Cu有明顯腐蝕溶解,Sn則沒有;添加Ge使腐蝕現象,轉變成均勻腐蝕。
在氫氧化鈉中的LSV顯示,添加Cu-Sn,僅降低活性區電流密度;添加Ge,則同時降低活性區與鈍化區的電流密度。氫氧化鈉的EIS顯示,添加Cu-Sn,使鈍化膜阻抗上升;添加Ge,使鈍化膜阻抗上升更明顯。
綜合以上評估,Ge微合金化後的Fr-20Cr合金,是一個創新型耐腐蝕合金。
This study is to evaluate the anticorrosion behaviors of alloyed Fe-20Cr ferritic stainless steels with microaddition of Cu-Sn and Ge, by means of LSV, EIS, CV, OCP, microstructure and composition analysis of etchant after immersion, as well as by use of ESCA and AES analyses of the passive film of the alloys.
Although LSV results in H2SO4 for alloys of Cu-Sn addition show improved corrosion resistance at the alloy active corrosion region, which promotes the passive film formation, the passivation corrosion current density increases. For Ge-alloyed, LSV results in H2SO4 show improved stability of passive film. EIS data in H2SO4 for the Cu-Sn-alloyed have a decreased passive film thickness and lower impedance, while for the Ge-alloyed, data not only show a decreased film thickness, but also show increased impedance, indicating that the Ge-alloyed changes the type and property of the passive film. Data for OCP in H2SO4 manifest the Cu-Sn- alloyed has no obvious trend for added amount of Cu-Sn, while the Ge- alloyed has improved stability for increasing the content of Ge addition. Microstructure and composition analyses on corrosion surface show general corrosion behavior for both the Cu-Sn- and the Ge-microalloyed cases. However, the Cu-Sn-alloyed has deteriorated corrosion resistance vs the non-alloyed, while the Ge-alloyed has superior behavior. Data for ESCA and AES analyses of passive film in H2SO4 show the passive film for both kinds of alloys is principally composed of Fe3O4, FeO/Fe2O3, Cr2O3, CuO, SnO2, and GeO2. As mentioned above, no matter what the Cu-Sn- or Ge-microalloyed, the passive film thickness decreases, and the composition of the film changes. Data from the LSV in NaCl have no obvious effect on the corrosion behavior for the Cu-Sn-added, while for the Ge-added, the cross-over voltage for passivation corrosion enlarges, pitting corrosion voltage increases, and passivation corrosion current density drops, mentioning its improved corrosion behavior. Data from the EIS in NaCl also show no obvious trend in results for the Cu-Sn-added, while for the Ge-added there is a rise in impedance for passive film, and as the amount of Ge addition increases to a specific amount, ionic diffusion occurs. CV data in NaCl show an inferior effect of Cu-Sn, while there is a superior effect of Ge. The NaCl solution after alloy immersion of Cu-Sn-alloyed shows an obvious Cu dissolution but without Sn content. It shows general corrosion behavior for the Ge-added in NaCl.
Results of the Cu-Sn-added for LSV in NaCl observe only a lower corrosion current density in its active region, while for the Ge-added, both active and passive corrosion current densities are lowered. EIS results in NaCl demonstrate a rise in impedance for the Cu-Sn-added, and even a more rise for the Ge-added.
Therefore it is concluded that the Fe-20Cr microalloyed with Ge is an innovative corrosion resistance alloy.
目錄
摘要 I
Abstract III
致謝 VI
圖目錄 XIV
表目錄 XXVIII
第1章 前言 1
第2章 文獻回顧 3
2.1不鏽鋼簡介 3
2.1.1沃斯田鐵系不鏽鋼 7
2.1.2肥粒鐵系不鏽鋼 9
2.1.3麻田散鐵系不鏽鋼 10
2.1.4析出硬化型不鏽鋼 11
2.1.5雙相型不鏽鋼 12
2.2 微量添加不鏽鋼簡介 13
2.2.1加錫不鏽鋼簡介 13
2.2.2加銅不鏽鋼簡介 16
2.2.3加鍺不鏽鋼簡介 18
2.3腐蝕電化學理論 21
2.3.1腐蝕現象簡介 21
2.3.2腐蝕電化學反應 22
2.3.3 法拉第定律 26
2.3.4極化現象 27
2.3.5 鈍化現象 40
2.4電化學量測方法 45
2.4.1線性極化法 47
2.4.2阻抗頻譜法 50
2.4.3循環伏安法 57
2.4.4開路電位法 63
第3章 實驗步驟 66
3.1合金設計 67
3.2合金製備 67
3.3試片熱處理 69
3.4 X光繞射分析與SEM分析 69
3.5電化學實驗 71
3.5.1線性極化法 72
3.5.2阻抗頻譜法 73
3.5.3循環伏安法 74
3.5.4開路電位法 75
3.6感應耦合電漿質譜儀 76
3.7奈米級歐傑電子能譜儀 77
3.8化學分析電子儀 78
第4章 結果與討論 81
4.1微結構與成分分析 81
4.1.1 CS合金的XRD與微結構分析 81
4.2硫酸溶液的腐蝕實驗 91
4.2.1線性極化法 91
4.2.2阻抗頻譜法 113
4.2.3循環伏安法 127
4.2.4開路電位法 133
4.2.5腐蝕金相 138
4.2.6腐蝕後溶液ICP分析 147
4.2.7化學分析電子儀 151
4.2.8奈米級歐傑電子能譜儀 177
4.3 氯化鈉溶液的腐蝕實驗 183
4.3.1線性極化法 183
4.3.2阻抗頻譜法 189
4.3.3循環伏安法 199
4.3.5腐蝕後溶液ICP分析 206
4.4氫氧化鈉溶液的腐蝕實驗 210
4.4.1線性極化法 210
4.4.2阻抗頻譜法 218
第5章 結論 228
第6章 參考文獻 233
[1] 李芃,國立清華大學材料科學工程研究所碩士論文(2013).
[2] 林逸瑋,國立清華大學材料科學工程研究所碩士論文(2012).
[3] W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill Companies, Inc, (Boston, 1993).
[4] P. Marcus, Corrosion Mechanisms inTheory and Practice, Marcel Dekker, Inc, (New York, 2002).
[5] 黃振賢,機械材料,新文京開發出版股份有限公司,台北(1990).
[6] 潘永村,劉宏義,李至隆, "不銹鋼之發展沿革與用途,"技術與訓練(1996).
[7] 王繼敏,不銹鋼與金屬腐蝕,科技圖書股份有限公司,台北市 (1990).
[8] http://www.sgte.org/fact/phase_diagram.php?file=Cr-Fe.jpg&dir=SGTE.
[9] R.H. Jones (ed.), Stress Corrosion Cracking, ASM International (Materials Park, Ohio, 1992).
[10] NSSC, Nippon Steel News 308 (2011).
[11] NSSC, High-Purity Ferritic Stainless Steel Excellent, in Corrosion Resistance and Workability and Process for Production of The Same, EP Patent 2,246,455 (2010).
[12] E.E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang, F. Wang, Electrochimica Acta 55 (2010) 5028-5035.
[13] M. Seo, G. Hultquist, C. Leygraf, N. Sato, Corrosion Science 26 (1986) 949-960.
[14] B. Kim, K. Park, H. Kimura, Y. Park, I. Park, Materials Transactions, The Japan Institure of Metals 53 (2012) 240-243.
[15] H. Cui, J.Y. Cho, J.H. Park, H.S. Park, J.G. Park, Journal of the Electrochemical Society 158 (2011) 666-670.
[16] D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, (New York, 1992).
[17] 楊德鈞,金屬腐蝕學,冶金工業出版社發行部,北京(1999).
[18] 李宗逹,國立清華大學材料科學工程研究所碩士論文(2009).
[19] 高逸帆,國立清華大學材料科學工程研究所碩士論文(2008).
[20] 張競謙,國立清華大學材料科學工程研究所碩士論文(2006).
[21] 吳家豪,國立清華大學材料科學工程研究所碩士論文(2006).
[22] 曹楚南,腐蝕電化學.化學工業出版社,北京(1994).
[23] M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Company, (New York, 1986).
[24] 曹楚南,悄悄進行的破壞:金屬腐蝕,清華大學出版社,北京(2000).
[25] 顏在延,國立清華大學材料科學工程研究所碩士論文(2011).
[26] 柯賢文,腐蝕及其防制,第二版,全華出版社,台北(2012).
[27] O.E. Barcia, O.R. Mattos, Electrochimica Acta 35 (1990) 1003-1009.
[28] Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Corrosion Science 52 (2010) 1026-1034.
[29] F. Mansfeld, Journal of Applied Electrochemistry 25 (1995) 187-202.
[30] A. Pardo, M. Merino, A. Coy, F. Viejo, R. Arrabal, E. Matykina, Corrosion Science 50 (2008) 1796-1806.
[31] N. Ramasubramanian, N. Preocanin, R. Davidson, Journal of The Electrochemical Society 132 (1985) 793-798.
[32] M. Seo, G. Hultquist, C. Leygraf, N. Sato, Corrosion Science 26 (1986) 949-960.
[33] S.H. Song, P. Xiao, Journal of Materials Science 38 (2003) 499-506.
[34] H. D. ErtuğruL, Z. O. Uygun, Impedimetric Biosensors for Label-Free and Enzymless Detection, in State of the Art in Biosensors - General Aspects, Toonika Rinken (ed.), Chapter 8, InTech (Rijeka, Croatia, 2013).
[35] http://ce.sysu.edu.cn/Echemi/acbx/Content/part2/chapter13/content_b_13_05.html
[36] http://chemwiki.ucdavis.edu/Analytical_Chemistry/Analytical_Chemistry_2.0/11_Electrochemical_Methods/11D_Voltammetric_Methods
[37] C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, H. C. Shih, Corrosion Science 50 (2008) 2053-2060.
[38] H. Zhang, Y. Wang, E.R. Fachini, C.R. Cabrera, Electrochemical and Solid-State Letters 2 (1999) 437-439.
[39] B. Więcek, U. Twardoch, Journal of Physics and Chemistry of Solids 65 (2004) 263-268.
[40] B.E. Wilde, Corrosion 28 (1972) 283-292.
[41] A. Pardo, M. Merino, A. Coy, F. Viejo, R. Arrabal, E. Matykina, Corrosion Science 50 (2008) 780-794.
[42] J. Pan, C. Leygraf, R. Jargelius-Pettersson, J. Linden, Oxidation of Metals 50 (1998) 431-455.
[43] J. Dobbelaar, J. De Wit, Journal of The Electrochemical Society 137 (1990) 2038-2046.
[44] N.D. Nam, M.J. Kim, Y.W. Jang, J.G. Kim, Corrosion Science 52 (2010) 14-20.
[45] A. Pardo, M. Merino, M. Carboneras, A. Coy, R. Arrabal, Corrosion Science 49 (2008) 510-525.
[46] S. Refaey, Electrochimica Acta 41 (1996) 2545-2549.
[47] K. Varga, P. Baradlai, W. Barnard, G. Myburg, P. Halmos, J. Potgieter, Electrochimica Acta 42 (1997) 25-35.
[48] C. D. Wagner, W. M Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, 1st ed., Minnesota (1979).
[49] P. Bommersbach, C.Alemany-Dumont, J.P. Miller, B. Normand, Electrochimica Acta 51 (2005) 1076-1084.
[50] M. A. Amin, Electrochimica Acta 54 (2009) 1857-1863.
[51] L. Organ, J. R. Scully, A. S. Mikhailov, J. L. Hudson, Electrochimica Acta 51 (2005) 225-241.
[52] Y. M. Tang, Y. Zuo, X. H. Zhao, Corrosion Science 50 (2008) 989-994.
[53] Y. Zuo, H. Wang, J. Xiong, Corrosion Science 44 (2002) 25-35.
[54] Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Corrosion Science 47 (2005) 2679-2699.
[55] T.K. Chen, M.S. Wong, Surface & Coatings Technology, 200 (2005) 1361-1365.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *