帳號:guest(3.141.27.244)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):紀威榮
作者(外文):Chi, Wei-Jung
論文名稱(中文):用於高效率有機光電元件之濕式製程主動層與電極
論文名稱(外文):Solution Processed Active Layers and Electrodes for Efficient Organic Optoelectronic Devices
指導教授(中文):林皓武
口試委員(中文):汪根欉
朱治偉
吳志毅
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031609
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:129
中文關鍵詞:濕式製程透明電極奈米銀線薄膜有機光電二極體OLED
相關次數:
  • 推薦推薦:0
  • 點閱點閱:458
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本篇論文主要為研究並開發濕式製程塗佈之主動層和電極,多數採用新穎自動化刮刀塗佈製程進行,並應用於有機光電元件上。
首先,在本篇論文一開始先回顧有機發光二極體(OLEDs)的發展歷史,並簡述有機發光二極體於顯示器和照明之應用,接著介紹其發光和量測之原理。
第三章節,我們將簡略介紹目前各種常見濕式塗佈薄膜方式,並著重於刮刀塗佈製程。調整刮刀速度並挑選適合溶劑,製作刮刀塗佈主動層之元件,以最佳化元件結構,效率達到綠色小分子磷光OLED 53.4 cd/A、54.3 lm/W和外部量子產率(EQE) 15.5 % 之表現,與對應之旋轉塗佈主動層元件表現一致。然後進一步發展多層濕式塗佈之技術,關鍵在於挑選不易溶於下層薄膜之溶劑作塗佈,我們利用溶於乙醇的TPBi作為傳輸層材料,成功製作出效率達29.5 cd/A、13.5 lm/W和EQE 8.4 %之全濕式製程綠光OLED。
第四章節我們研究以鉑金屬為中心的深藍色磷光錯合物分子,由於鉑錯合物易於互相靠近堆疊的特性而引入長碳鏈立體障礙基團,試圖良好的隔開分子以利維持原有光色。在元件製程上,經由每次實驗逐步的改善結構,成功在保持深藍色光之前提下提升元件效率,達CIE座標 (0.17, 0.27)、最大效率10.8 cd/A、7.0 lm/W和EQE 5.7 % 之表現。
第五章是奈米銀線相關電極之開發,試圖取代ITO成為新世代可撓性透明電極。我們利用導電高分子利於塗佈成整面導電電極之優點,加入奈米銀線優異的導電能力製作導電高分子PEDOT:PSS與奈米銀線之複合式電極,兩材料皆有穿透度良好的優點,因此能夠達到穿透度大於90 % 片電阻小於100 Ω/sq 之表現。為了證實此電極之有效性,我們以AFM顯微鏡檢視其表面粗糙度,並將PEDOT:PSS與奈米銀線之複合式電極應用於有機發光二極體、有機太陽能電池和鈣鈦礦太陽能電池上,分別達到最大放光效率50.4 cd/A、55.3 lm/W和EQE 13.5 % 以及能量轉換效率 4.2 % 和6.6 % 之表現。此外,我們也利用電動平移台作自動化的彎曲測試,並將元件製作於軟性塑膠基板PEN上檢視電極之可撓性。
於最後章節,我們將總結本論文研究主旨和未來的發展方向。
Chapter 1 序論 1
1-1 前言 1
1-2 論文架構 2
Chapter 2 有機發光二極體概論 3
2-1 簡介 3
2-2 發展歷史 5
2-3 發光原理 7
2-3.1 基本工作原理 7
2-3.2 能量轉移機制 9
2-3.3 非輻射能量轉移 11
2-3.3.1 Fӧster能量轉移 11
2-3.3.2 Dexter能量轉移 12
2-3.4 螢光和磷光放光 13
2-4 量測原理 15
2-4.1 放射學與光度學 15
2-4.2 亮度量測 15
2-4.3 效率量測 16
2-4.4 CIE色座標與色溫 20
2-4.5 演色性 21
Chapter 3刮刀製程有機發光二極體 26
3-1 簡介 26
3-2 濕式製程介紹 27
3-2.1 Spin coating 27
3-2.2 Blade coating 28
3-2.3 Slot-dye coating 30
3-2.4 Spray coating 30
3-2.5 Ink-jet printing 31
3-2.5 Dip coating 32
3-3 自動化刮刀製程 33
3-4 相關文獻回顧 34
3-5 刮刀塗佈主動層元件 36
3-5.1 使用氯仿作為溶劑 36
3-5.2 使用甲苯作為溶劑 39
3-5.3 刮刀連續塗佈EML/ETL元件 42
3-6 結論 44
Chapter 4 濕式製程深藍光有機發光二極體 45
4-1 簡介 45
4-2 文獻回顧與材料發展 46
4-2.1 藍色磷光材料發展 46
4-2.2 鉑金屬錯合物材料發展 47
4-3 鉑金屬錯合物藍色磷光材料介紹 49
4-4 元件製作與量測 50
4-4.1 基本性質量測 50
4-4.2 初步結構 53
4-4.3 主體材料選擇 57
4-4.4 立體障礙鍊長短之影響 59
4-4.5 客體摻雜濃度之影響 61
4-4.5.1 改變HLM-082的摻雜濃度 61
4-4.5.2 改變HLM-060的摻雜濃度 65
4-4.5.3 改變HLM-110的摻雜濃度 67
4-4.6 加入電洞阻擋層 69
4-4.7 加入電洞傳輸層 (犧牲層) 72
4-5 結論 77
Chapter 5 導電高分子與奈米銀線之複合式電極 78
5-1 簡介 78
5-2 奈米銀線介紹 79
5-3 文獻回顧 81
5-4 複合式電極製作 84
5-4.1 材料製程選擇與實驗構想 84
5-4.2 混和導電高分子與奈米銀線 84
5-4.3 複合式電極之塗佈 85
5-5 複合式電極基本性質量測 86
5-5.1 複合式電極之導電度 86
5-5.2 複合式電極之彎曲測試 90
5-5.3 複合式電極之穿透度 94
5-5.4 複合式電極之粗糙度 98
5-6 複合式應用於有機光電元件 101
5-6.1 複合式電極應用於有機光電二極體 101
5-6.2 複合式電極應用於有機太陽能電池 106
5-6.3 複合式電極應用於鈣鈦礦太陽能電池 109
5-6.4 複合式電極應用於可撓性元件 112
5-7 結論 113
Chapter 6 未來展望 114
參考文獻 116
1. http://oled.lcdtvbuyingguide.com/oled-tv-articles/sony-ces-2011.html.
2. http://www.whathifi.com/news.
3. http://www.samsungces.com/keynote.aspx.
4. http://www.lg.com/uk/tvs/lg-55EM960V-oled-tv.
5. https://www1.eere.energy.gov/buildings/ssl/highlights_ge.html.
6. http://www.oled-info.com.
7. http://www.archiproducts.com/en/products/29080.
8. http://www.oled-info.com/lumiotec-p06-oled-lighting-panels.
9. M. Pope, H. P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. J. Chem. Phys 1963, 38, 2042.
10. P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 1982, 94, 171.
11. C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913.
12. C. W. Tang, S. A. VanSlyke, and C. H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 1989, 65, 3610.
13. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539.
14. H. Yersin, Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. 2004, 241.
15. http://www.uni-leipzig.de/~pwm/web.
16. http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals.
17. R. Wang, D. Liu, R. Zhang, L. Deng, and J. Li, Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes. J. Mater. Chem. 2012, 22, 1411.
18. S.-J. Kim, Y. Zhang, C. Zuniga, S. Barlow, S. R. Marder, and B. Kippelen, Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Org. Electron. 2011, 12, 492.
19. C. W. Lee and J. Y. Lee, High quantum efficiency in solution and vacuum processed blue phosphorescent organic light emitting diodes using a novel benzofuropyridine-based bipolar host material. Adv. Mater. 2013, 25, 596.
20. K. H. Kim, J. Y. Lee, T. J. Park, W. S. Jeon, G. P. Kennedy, and J. H. Kwon, Small molecule host system for solution-processed red phosphorescent OLEDs. Synth. Met. 2010, 160, 631.
21. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955.
22. J. Krantz, M. Richter, S. Spallek, E. Spiecker, and C. J. Brabec, Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells. Adv. Funct. Mater. 2011, 21, 4784.
23. J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I. F. Lin, and S.-F. Horng, All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Org. Electron. 2009, 10, 1610.
24. L.-C. Ko, T.-Y. Liu, C.-Y. Chen, C.-L. Yeh, S.-R. Tseng, Y.-C. Chao, H.-F. Meng, S.-C. Lo, P. L. Burn, and S.-F. Horng, Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Org. Electron. 2010, 11, 1005.
25. H.-C. Yeh, H.-F. Meng, H.-W. Lin, T.-C. Chao, M.-R. Tseng, and H.-W. Zan, All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Org. Electron. 2012, 13, 914.
26. Y.-F. Chang, Y.-C. Chiu, H.-C. Yeh, H.-W. Chang, C.-Y. Chen, H.-F. Meng, H.-W. Lin, H.-L. Huang, T.-C. Chao, M.-R. Tseng, H.-W. Zan, and S.-F. Horng, Unmodified small-molecule organic light-emitting diodes by blade coating. Org. Electron. 2012, 13, 2149.
27. http://www.mtixtl.com/SyringePumpSP300.aspx.
28. Y. Li, B.-X. Li, W.-Y. Tan, Y. Liu, X.-H. Zhu, F.-Y. Xie, J. Chen, D.-G. Ma, J. Peng, Y. Cao, and J. Roncali, Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes. Org. Electron. 2012, 13, 1092.
29. A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 2013, 7, 1081.
30. H. Youn, K. Jeon, S. Shin, and M. Yang, All-solution blade–slit coated polymer light-emitting diodes. Org. Electron. 2012, 13, 1470.
31. S.-C. Chang, J. Liu, J. Bharathan, Y. Yang, J. Onohara, and J. Kido, Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing. Adv. Mater. 1999, 11, 734.
32. F. Villani, P. Vacca, R. Miscioscia, G. Nenna, G. Burrasca, T. Fasolino, C. Minarini, and D. d. Sala, OLED with Hole-Transporting Layer Fabricated by Ink-Jet Printing. Macromolecular Symposia 2009, 286, 101.
33. D. Braga, N. C. Erickson, M. J. Renn, R. J. Holmes, and C. D. Frisbie, High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices. Adv. Funct. Mater. 2012, 22, 1623.
34. G. J. McGraw and S. R. Forrest, Vapor-phase microprinting of multicolor phosphorescent organic light emitting device arrays. Adv. Mater. 2013, 25, 1583.
35. A. Teichler, Z. Shu, A. Wild, C. Bader, J. Nowotny, G. Kirchner, S. Harkema, J. Perelaer, and U. S. Schubert, Inkjet printing of chemically tailored light-emitting polymers. Eur. Polym. J. 2013, 49, 2186.
36. F. Ely, C. O. Avellaneda, P. Paredez, V. C. Nogueira, T. E. A. Santos, V. P. Mammana, C. Molina, J. Brug, G. Gibson, and L. Zhao, Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties. Synth. Met. 2011, 161, 2129.
37. http://www.dp3project.org/technologies/digital-printing/inkjet.
38. C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, and K. Leo, Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells. Org. Electron. 2013, 14, 143.
39. http://www.ahk-service.de/main/coating-technologies.
40. G. Liaptsis and K. Meerholz, Crosslinkable TAPC-Based Hole-Transport Materials for Solution-Processed Organic Light-Emitting Diodes with Reduced Efficiency Roll-Off. Adv. Funct. Mater. 2013, 23, 359.
41. J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, Fully Solution-Based Fabrication of Flexible Light-Emitting Device at Ambient Conditions. J. Phys. Chem. C 2013, 117, 16632.
42. G.-K. Ho, H.-F. Meng, S.-C. Lin, S.-F. Horng, C.-S. Hsu, L.-C. Chen, and S.-M. Chang, Efficient white light emission in conjugated polymer homojunctions. Appl. Phys. Lett. 2004, 85, 4576.
43. J.-S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes. Appl. Phys. Lett. 2005, 87, 023506.
44. D. D. Zhai, T. Y. Zhang, J. B. Guo, X. H. Fang, and J. Wei, Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2013, 424, 1.
45. E. Ahmed, T. Earmme, and S. A. Jenekhe, New Solution-Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs. Adv. Funct. Mater. 2011, 21, 3889.
46. T. Earmme, E. Ahmed, and S. A. Jenekhe, Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material. Adv. Mater. 2010, 22, 4744.
47. S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, Multilayer polymer light-emitting diodes by blade coating method. Appl. Phys. Lett. 2008, 93, 153308.
48. C.-C. Fan, M.-H. Huang, W.-C. Lin, H.-W. Lin, Y. Chi, H.-F. Meng, T.-C. Chao, and M.-R. Tseng, Single-emission-layer white organic light-emitting devices: Chromaticity and colour-rendering consideration. Org. Electron. 2014, 15, 517.
49. S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151.
50. Y. M. Cheng, G. H. Lee, P. T. Chou, L. S. Chen, Y. Chi, C. H. Yang, Y. H. Song, S. Y. Chang, P. I. Shih, and C. F. Shu, Rational design of Chelating phosphine functionalized Os((II)) emitters and fabrication of orange polymer light-emitting diodes using solution process. Adv. Funct. Mater. 2008, 18, 183.
51. Y.-L. Tung, S.-W. Lee, Y. Chi, Y.-T. Tao, C.-H. Chien, Y.-M. Cheng, P.-T. Chou, S.-M. Peng, and C.-S. Liu, Organic light-emitting diodes based on charge-neutral Os(ii) emitters: generation of saturated red emission with very high external quantum efficiency. J. Mater. Chem. 2005, 15, 460.
52. Y. L. Tung, S. W. Lee, Y. Chi, L. S. Chen, C. F. Shu, F. I. Wu, A. J. Carty, P. T. Chou, S. M. Peng, and G. H. Lee, Organic Light-Emitting Diodes based on Charge-Neutral RuII Phosphorescent Emitters. Adv. Mater. 2005, 17, 1059.
53. Y. L. Tung, L. S. Chen, Y. Chi, P. T. Chou, Y. M. Cheng, E. Y. Li, G. H. Lee, C. F. Shu, F. I. Wu, and A. J. Carty, Orange and Red Organic Light-Emitting Devices Employing Neutral Ru(II) Emitters: Rational Design and Prospects for Color Tuning. Adv. Funct. Mater. 2006, 16, 1615.
54. B. Ma, P. I. Djurovich, S. Garon, B. Alleyne, and M. E. Thompson, Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light-Emitting Diodes. Adv. Funct. Mater. 2006, 16, 2438.
55. W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, N. Zhu, S.-T. Lee, and C.-M. Che, [(C^N^N)Pt(C=C)nR] (HC^N^N = 6-aryl-2,2'-bipyridine, n = 1–4, R = aryl, SiMe3) as a new class of light-emitting materials and their applications in electrophosphorescent devices. Chem. Commun. 2002, 206.
56. S. Y. Chang, J. Kavitha, S. W. Li, C. S. Hsu, Y. Chi, Y. S. Yeh, P. T. Chou, G. H. Lee, A. J. Carty, Y. T. Tao, and C. H. Chien, Platinum(II) complexes with pyridyl azolate-based chelates: Synthesis, structural characterization, and tuning of photo- and electrophosphorescence. Inorg. Chem. 2006, 45, 137.
57. L. Li, Z. Yu, W. Hu, C. H. Chang, Q. Chen, and Q. Pei, Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563.
58. M. Cai, Z. Ye, T. Xiao, R. Liu, Y. Chen, R. W. Mayer, R. Biswas, K. M. Ho, R. Shinar, and J. Shinar, Extremely efficient indium-tin-oxide-free green phosphorescent organic light-emitting diodes. Adv. Mater. 2012, 24, 4337.
59. C. Cai, S.-J. Su, T. Chiba, H. Sasabe, Y.-J. Pu, K. Nakayama, and J. Kido, High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Org. Electron. 2011, 12, 843.
60. E. Najafabadi, K. A. Knauer, W. Haske, C. Fuentes-Hernandez, and B. Kippelen, Highly efficient inverted top-emitting green phosphorescent organic light-emitting diodes on glass and flexible substrates. Appl. Phys. Lett. 2012, 101, 023304.
61. B.-S. Du, J.-L. Liao, M.-H. Huang, C.-H. Lin, H.-W. Lin, Y. Chi, H.-A. Pan, G.-L. Fan, K.-T. Wong, G.-H. Lee, and P.-T. Chou, Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. Adv. Funct. Mater. 2012, 22, 3491.
62. Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, and C. Adachi, Triplet Exciton Confinement in Green Organic Light-Emitting Diodes Containing Luminescent Charge-Transfer Cu(I) Complexes. Adv. Funct. Mater. 2012, 22, 2327.
63. Y. Liu, Y. Wang, J. He, Q. Mei, K. Chen, J. Cui, C. Li, M. Zhu, J. Peng, W. Zhu, and Y. Cao, High-efficiency red electroluminescence from europium complex containing a neutral dipyrido(3,2-a:2',3'-c)phenazine ligand in PLEDs. Org. Electron. 2012, 13, 1038.
64. H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, and H. Fujikake, Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes. Adv. Mater. 2012, 24, 5099.
65. S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompson, Cyclometalated Ir complexes in polymer organic light-emitting devices. J. Appl. Phys. 2002, 92, 1570.
66. J. Lee, J.-I. Lee, K.-I. Song, S. J. Lee, and H. Y. Chu, Effects of interlayers on phosphorescent blue organic light-emitting diodes. Appl. Phys. Lett. 2008, 92, 203305.
67. Y. Chen, J. Chen, Y. Zhao, and D. Ma, High efficiency blue phosphorescent organic light-emitting diode based on blend of hole- and electron-transporting materials as a co-host. Appl. Phys. Lett. 2012, 100, 213301.
68. S. Gong, Q. Fu, Q. Wang, C. Yang, C. Zhong, J. Qin, and D. Ma, Highly efficient deep-blue electrophosphorescence enabled by solution-processed bipolar tetraarylsilane host with both a high triplet energy and a high-lying HOMO level. Adv. Mater. 2011, 23, 4956.
69. S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off. Adv. Mater. 2008, NA.
70. W. Jiang, L. Duan, J. Qiao, G. Dong, D. Zhang, L. Wang, and Y. Qiu, High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. J. Mater. Chem. 2011, 21, 4918.
71. K. S. Yook and J. Y. Lee, Organic materials for deep blue phosphorescent organic light-emitting diodes. Adv. Mater. 2012, 24, 3169.
72. H. Fukagawa, N. Yokoyama, S. Irisa, and S. Tokito, Pyridoindole derivative as electron transporting host material for efficient deep-blue phosphorescent organic light-emitting diodes. Adv. Mater. 2010, 22, 4775.
73. S. Ye, Y. Liu, J. Chen, K. Lu, W. Wu, C. Du, Y. Liu, T. Wu, Z. Shuai, and G. Yu, Solution-processed solid solution of a novel carbazole derivative for high-performance blue phosphorescent organic light-emitting diodes. Adv. Mater. 2010, 22, 4167.
74. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl. Phys. Lett. 2001, 79, 2082.
75. J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau, and M. E. Thompson, Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands. Polyhedron 2004, 23, 419.
76. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl. Phys. Lett. 2003, 83, 3818.
77. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, and C. H. Chen, New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices. Adv. Mater. 2005, 17, 285.
78. J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. Inorg. Chem. 2002, 41, 3055.
79. V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D'Andrade, C. Adachi, S. R. Forrest, and M. E. Thompson, High efficiency single dopant white electrophosphorescent light emitting diodes. New J. Chem. 2002, 26, 1171.
80. E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency. Adv. Mater. 2007, 19, 197.
81. A. F. Rausch, L. Murphy, J. A. Williams, and H. Yersin, Improving the performance of Pt(II) complexes for blue light emission by enhancing the molecular rigidity. Inorg. Chem. 2012, 51, 312.
82. T. Fleetham, Z. Wang, and J. Li, Efficient deep blue electrophosphorescent devices based on platinum(II) bis(n-methyl-imidazolyl)benzene chloride. Org. Electron. 2012, 13, 1430.
83. T. Fleetham, J. Ecton, Z. Wang, N. Bakken, and J. Li, Single-doped white organic light-emitting device with an external quantum efficiency over 20%. Adv. Mater. 2013, 25, 2573.
84. I. Cruz-Cruz, M. Reyes-Reyes, M. A. Aguilar-Frutis, A. G. Rodriguez, and R. López-Sandoval, Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synth. Met. 2010, 160, 1501.
85. J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443.
86. N. G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R. J. Potter, G. Dearden, K. G. Watkins, P. French, and M. Sharp, Modification of the electrical properties of PEDOT:PSS by the incorporation of ZnO nanoparticles synthesized by laser ablation. Chem. Phys. Lett. 2010, 484, 283.
87. T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 2013, 6, 788.
88. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Adv. Mater. 2008, 20, 4061.
89. R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, ITO-Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films. Adv. Funct. Mater. 2013, 23, 1490.
90. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei, Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664.
91. A. B. V. Kiran Kumar, C. wan Bae, L. Piao, and S.-H. Kim, Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 2013, 48, 2944.
92. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977.
93. L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075.
94. C. H. Liu and X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 2011, 6, 75.
95. H. J. Lee, T. H. Park, J. H. Choi, E. H. Song, S. J. Shin, H. Kim, K. C. Choi, Y. W. Park, and B.-K. Ju, Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes. Org. Electron. 2013, 14, 416.
96. Z. Yu, L. Li, Q. Zhang, W. Hu, and Q. Pei, Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453.
97. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905.
98. L. Li, Z. Yu, C. H. Chang, W. Hu, X. Niu, Q. Chen, and Q. Pei, Efficient white polymer light-emitting diodes employing a silver nanowire-polymer composite electrode. Phys. Chem. Chem. Phys. 2012, 14, 14249.
99. Y.-J. Noh, S.-S. Kim, T.-W. Kim, and S.-I. Na, Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT:PSS composite electrodes via a one-step spray deposition method. Sol. Energy Mater. Sol. Cells 2014, 120, 226.
100. J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera, and R. Pacios, Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol. Energy Mater. Sol. Cells 2012, 102, 148.
101. Y. Jin, D. Deng, Y. Cheng, L. Kong, and F. Xiao, Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 2014, 6, 4812.
102. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 2011, 4, 1215.
103. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241.
104. C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, and J.-P. Simonato, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 2012, 5, 427.
105. S. Coskun, E. Selen Ates, and H. E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202.
106. J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408.
107. X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484.
108. C.-Y. Lin, D.-H. Kuo, W.-C. Chen, M.-W. Ma, and G.-S. Liou, Electrical performance of the embedded-type surface electrodes containing carbon and silver nanowires as fillers and one-step organosoluble polyimide as a matrix. Org. Electron. 2012, 13, 2469.
109. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. W. Zhou, Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique. Nano Res 2010, 3, 564.
110. R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G. Li, and Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 5, 9877.
111. D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, and J. C. de Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371.
112. J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, and C. J. Brabec, Spray-Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices. Adv. Funct. Mater. 2013, 23, 1711.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *