帳號:guest(18.209.63.120)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏伍宏
論文名稱(中文):氧化銦錫奈米線之合成與光觸媒性質
論文名稱(外文):Fabrication and Photocatalysis Properties of Tin-doped Indium Oxide Nanowires
指導教授(中文):林樹均
口試委員(中文):吳志明
洪健龍
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031600
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:氧化銦錫光觸媒
相關次數:
  • 推薦推薦:0
  • 點閱點閱:53
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以VLS熱蒸鍍法合成出氧化銦錫奈米線,藉由改變製程溫度、氧氣的流量及來源粉末不同比率三種參數,觀察合成出之氧化銦錫奈米線形貌以及性質上的差異,尋找出最佳的奈米線製程參數後,而後將此合成出的奈米線進行光學、光觸媒特性分析並比較不同錫摻雜量之間的關係。以場發射電子顯微鏡(FESEM)分析不同製程溫度及氧流量下的奈米線形貌,在溫度偏高、氧流量太小及太大的情況下,會影響奈米線的成長及形貌,最佳狀況為700 C以及氧流量4.5 sccm下合成出高密度的奈米線,奈米線線徑約為200-300 nm,線長約為10 m。X光粉末繞射儀(XRD)及穿透式電子顯微鏡(TEM)確認奈米線的結構為單晶的立方鐵錳礦 (Cubic Bixbyite) 結構,不會受持溫溫度及粉末比率等製程參數而改變。紫外光可見光(UV-vis)光譜圖中觀察隨錫摻雜增加,吸收峰先往長波長之後往短波長偏移,推測錫摻雜量偏高時奈米線轉變為簡併型半導體。經由紫外光可見光光譜圖和 Tauc 關係式求出氧化銦錫奈米線的光學能階,發現光學能階隨摻雜少量的錫增加而減少,隨著摻雜過多的錫增加而增加。光觸媒特性中,少量的摻雜錫進入奈米線,可有效提升光觸媒效率,但在較高的錫摻雜量下,因奈米線會轉變為簡併型半導體,使光觸媒效率降低。
目 錄
摘 要 I
圖 目 錄 IX
表 目 錄 XIII
一 前 言 1
二 文獻回顧 3
2.1 奈米材料簡介 3
2.1.1 一維奈米材料 3
2.1.2 奈米線熱蒸鍍合成法 4
2.1.3 一維奈米材料VLS成長機制 5
2.2 氧化銦錫結構、特性及合成之文獻回顧 8
2.2.1 氧化銦錫結構 8
2.2.2 氧化銦錫基本特性 10
2.2.3 合成氧化銦錫之文獻回顧 12
2.2.4 氧化銦錫奈米線應用 14
2.3 光觸媒原理及特性 15
三 實驗方法 22
3.1 實驗流程 22
3.1.1 基板披覆奈米金顆粒 23
3.1.2 氧化銦錫奈米線製備 24
3.2 奈米線結構、形貌與成分分析 27
3.2.1 場發射掃描式電子顯微鏡 27
3.2.2 X光繞射分析儀 28
3.2.3 穿透式電子顯微鏡 29
3.3 奈米線發光特性及光觸媒特性量測 30
3.3.1 紫外光-可見光光譜儀 30
四 結果與討論 32
4.1 奈米線形貌、結構與成分分析 32
4.1.1 形貌分析 32
4.1.2 結構分析 43
4.1.3 成分分析 50
4.2 奈米線光學特性量測 55
4.2.1 實驗方式與架構 55
4.2.2 UV-vis 光譜分析 55
4.3 光觸媒特性量測 62
4.3.1 實驗方式與架構 62
4.3.2 亞甲基藍溶液光分解(空白實驗) 64
4.3.3 光觸媒實驗結果與討論 66
五 結 論 74
六 建議未來研究方向 76
七 參考文獻 77
[1] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells”, Nature Materials, 4 (2005) 455.
[2] E. Comini, G. Sberveglieri, “Metal oxide nanowires as chemical sensors”, Materials Today, 13 (2010) 36.
[3] X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, “Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires”, Applied Physics Letters, 88 (2006) 201907.
[4] S.-P. Chang, S.-J. Chang, C.-Y. Lu, M.-J. Li, C.-L. Hsu, Y.-Z. Chiou, T.-J. Hsueh, I.C. Chen, “A ZnO nanowire-based humidity sensor”, Superlattices and Microstructures, 47 (2010) 772.
[5] H.H. Park, P.S. Kang, G.T. Kim, J.S. Ha, “Effect of gate dielectrics on the device performance of SnO2 nanowire field effect transistors”, Applied Physics Letters, 96 (2010) 102908.
[6] H.Zhu, Q. Li, “Visible light-driven CdSe nanotube array photocatalyst”, Nanoscale Research Letters, 8 (2013)230.
[7] W. Wang, J. Yang , Y. Gong, H. Hong,“Tunable synthesis of TiO2/SrO core/shell nanowire arrays with enhanced photocatalytic activity”, Materials Research Bulletin, 48 (2013) 21.
[8] H. Liu, G. She, L. Mu, W. Shi, “Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation”, Materials Research Bulletin, 47 (2012) 917.
[9] M. Lee, K. Yong, “Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays”, Nanotechnology, 23 (2012) 194014
[10] Y. Qu, T. Xue, X. Zhong, Y.C. Lin, L. Liao, J. Choi, X. Duan, “Heterointegration of Pt/Si/Ag nanowire photodiodes and their photocatalytic properties”, Advanced Functional Materials, 20, (2010)3005.
[11] J. S. Jang, H. G. Kim, U. A. Joshi, J. W. Jang, J. S. Lee, “Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation”, International journal of hydrogen energy, 33 (2008)5975.
[12] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi, “Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration”, Nanoscale Research Letters, 7(2012) 663.
[13] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, “Nanotube molecular wires as chemical sensors”, Science, 287 (2000) 622.
[14] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties”, Science, 283 (1999) 512.
[15] W.A. Deheer, A. Chatelain, D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270 (1995) 1179.
[16] S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49.
[17] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, “Carbon nanotubes- the route toward applications”, Science, 297 (2002) 787.
[18] L. Vayssieres,“Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Advanced Materials, 15 (2003) 464.
[19] W.I. Park, G.C. Yi, “Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN”, Advanced Materials, 16 (2004) 87.
[20] Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science, 293 (2001) 1289.
[21] M. Zhang, Z. Wang, G. Xi, D. Ma, R. Zhang, Y. Qian, “Large-scale synthesis of antimony nanobelt bundles”, Journal of Crystal Growth, 268 (2004) 215.
[22] M. Li, L.J. Qiao, W.Y. Chu, A.A. Volinsky, “Water pre-adsorption effect on room temperature SnO2 nanobelt ethanol sensitivity in oxygen-deficient conditions”, Sensors and Actuators B: Chemical, In Press, Accepted Manuscript.
[23] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292 (2001) 1897.
[24] X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, “Single-nanowire electrically driven lasers”, Nature, 421 (2003) 241.
[25] Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber, “Logic gates and computation from assembled nanowire building blocks”, Science, 294 (2001) 1313.
[26] Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property”, Applied Physics Letters, 85 (2004) 5923.
[27] C. O'Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, C.M.S. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices”, Nature Nano, 4 (2009) 239.
[28] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire”, Nano Letters, 6 (2006) 2768.
[29] W. Choi, “Pure and modified TiO2 photocatalysts and their environmental applications”, Catalysis Surveys from Asia,10, (2006)1.
[30] X.S. Peng, G.W. Meng, X.F. Wang, Y.W. Wang, J. Zhang, X. Liu, L.D. Zhang, “Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers”, Chemistry of Materials, 14 (2002) 4490.
[31] J. Gao, R. Chen, D.H. Li, L. Jiang, J.C. Ye, X.C. Ma, X.D. Chen, Q.H. Xiong, H.D. Sun, T. Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires”, Nanotechnology, 22 (2011) 195706.
[32] S.Y. Lee, C.Y. Lee, P. Lin, T.Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires”, Nanotechnology, 16 (2005) 451.
[33] Q. Wan, M. Wei, D. Zhi, J.L. MacManus-Driscoll, M.G. Blamire, “Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays”, Advanced Materials, 18 (2006) 234.
[34] R.S. Wagner, W.C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Applied Physics Letters, 4 (1964) 89.
[35] N. Wang, Y. Cai, R.Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports, 60 (2008) 1.
[36] 郭于鈺,“室溫氧化銦透明薄膜電晶體的製備”,碩士論文,光電工程研究所,國立中山大學,高雄,(2007)。
[37] H.S. Jang, D.-H. Kim, H.-R. Lee, S.-Y. Lee, “Field emission from cone-like single crystalline indium tin oxide nanorods”, Materials Letters, 59 (2005) 1526.
[38] L. Gupta, A. Mansingh, P.K. Srivastava, “Band gap narrowing and the band structure of tin-doped indium oxide films”, Thin Solid Films, 176 (1989) 33.
[39] Z.P. Wei, D.L. Guo, B. Liu, R. Chen, L.M. Wong, W.F. Yang, S.J. Wang, H.D. Sun, T. Wu, “Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires”, Applied Physics Letters, 96 (2010) 031902.
[40] 郭浩中,賴芳儀、郭守義,LED原理與應用,五南圖書,(2009)
[41] K.S. Park, Y.J. Choi, J.G. Kang, Y.M. Sung, J.G. Park, “The effect of the concentration and oxidation state of Sn on the structural and electrical properties of indium tin oxide nanowires”, Nanotechnology, 22 (2011) 285712.
[42] Q. Wan, Z.T. Song, S.L. Feng, T.H. Wang, “Single-crystalline tin-doped indium oxide whiskers: Synthesis and characterization”, Applied Physics Letters, 85 (2004) 4759.
[43] S.P. Chiu, H.F. Chung, Y.H. Lin, J.J. Kai, F.R. Chen, J.J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K”, Nanotechnology, 20 (2009) 105203.
[44] Y.Q. Chen, J. Jiang, J.G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth”, Journal of Physics D: Applied Physics, 37 (2004) 3319.
[45] H.S. Jang, D.H. Kim, H.R. Lee, S.Y. Lee, “Field emission from cone-like single crystalline indium tin oxide nanorods”, Materials Letters, 59 (2005) 1526.
[46] M.O. Orlandi, R. Aguiar, A.J.C. Lanfredi, E. Longo, J.A. Varela, E.R. Leite, “Tin-doped indium oxide nanobelts grown by carbothermal reduction method”, Applied Physics A: Materials Science & Processing, 80 (2005) 23.
[47] Q. Wan, P. Feng, T.H. Wang, “Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties”, Applied Physics Letters, 89 (2006)123102.
[48] H. Kim, S. Park, C. Jin, C. Lee, “Enhanced Photoluminescence in Au-Embedded ITO Nanowires”, ACS Applied Materials & Interfaces, 3 (2011) 4677.
[49] D.T. Dam, X. Wang, J.-M. Lee, “Fabrication of a mesoporous Co(OH)2/ITO nanowire composite electrode and its application in supercapacitors”, RSC Advances, 2 (2012) 10512.
[50] A. Mills, S. L. Hunte, “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry 108 (1997) 1.
[51] X. Chen, S. Shen, L. Guo, S.S. Mao, “Semiconductor-based photocatalytic hydrogen generation”, Chem. Rev., 110 (2010) 6503
[52] A.L. Linsebigler, G. Lu, J.T. Yates, Jr., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results”, Chemical Reviews, 95 (1995) 735.
[53] J. Nishio, M. Tokumura, H.T. Znad, Y. Kawase, “Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor”, Journal of Hazardous Materials,138 (2006) 106.
[54] C.H. Ao, M.K.H. Leung, R.C.W. Lam, D.Y.C. Leung, L.L.P. Vrijmoed, W.C. Yam, S.P. Ng, “Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UVA and visible-light irradiation”, Chemical Engineering Journal, 129 (2007) 153.
[55] L.H. Kao, T.C. Hsu, K.K. Cheng, “Novel synthesis of high-surface-area ordered mesoporous TiO2 with anatase framework for photocatalytic applications”, Journal of Colloid and Interface Science, 341 (2010) 359.
[56] D. S. Kim, S. J. Han, S.Y. Kwak, “Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size”, Journal of Colloid and Interface Science, 316 (2007) 85.
[57] N. Talebian, M.R. Nilforoushan, “Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue”, Thin Solid Films, 518 (2010) 2210.
[58] 李佩蓉,“氧化銦錫奈米線之電子場發射性質及導電性質研究”, 碩士論文,材料科學工程研究所,國立清華大學,新竹,(2011)。
[59] http://www.mse.nthu.edu.tw/about/property_om.php?Sn=30.
[60]http://www.nscric.nthu.edu.tw/EM/ULTRA%EF%BC%8DHRTEM/ULTRA%EF%BC%8DHRTEM.html.
[61] C.B. Alcock, V.P. Itkin, M.K. Horrigan, “Vapour Pressure Equations for the Metallic Elements: 298–2500K”, Canadian Metallurqical Quarterly, 23(1984) 309.
[62] 許家瑋,“以化學氣相法製備氧化銦一維奈米線”,碩士論文,材料科學工程研究所,國立東華大學,花蓮,(2007)。
[63] G.B. Gonzalez, J.B. Cohen, J.-H. Hwang, T.O. Mason, J.P. Hodges, J.D. Jorgensen, “Neutron diffraction study on the defect structure of indium--tin--oxide”, Journal of Applied Physics, 89 (2001) 2550.
[64] G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, J. Ba, “A study on the microstructure and gas sensing properties of ITO nanocrystals”, Thin Solid Films, 515 (2007) 8637.
[65] K.P. Kalyanikutty, G. Gundiah, C. Edem, A. Govindaraj, C.N.R. Rao, “Doped and undoped ITO nanowires”, Chemical Physics Letters, 408 (2005) 389.
[66] W.-F. Wu, B.-S. Chiou, “Effect of oxygen concentration in the sputtering ambient on the microstructure, electrical and optical properties of radio-frequency magnetron-sputtered indium tin oxide films”, Semiconductor Science and Technology, 11 (1996) 196.
[67] X.S. Peng, G.W. Meng, X.F. Wang, Y.W. Wang, J. Zhang, X. Liu, L.D. Zhang, “Synthesis of Oxygen-Deficient Indium−Tin-Oxide (ITO) Nanofibers”, Chemistry of Materials, 14 (2002) 4490.
[68] W. Song, S.K. So, L. Cao, “Angular-dependent photoemission studies of indium tin oxide surfaces”, Applied Physics A: Materials Science & Processing, 72 (2001) 361.
[69] P. Nguyen, S. Vaddiraju, M. Meyyappan, “Indium and tin oxide nanowires by vapor-liquid-solid growth technique”, Journal of Electronic Materials, 35 (2006) 200.
[70] I. Hamberg, C.G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows”, Journal of Applied Physics, 60 (1986) R123.
[71] J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium”, Physica Status Solidi B, 15 (1966) 627.
[72] R.L. Weiher, R.P. Ley, “Optical properties of indium oxide”, Journal of Applied Physics, 37 (1966) 299.
[73] T.T. Tseng, J.Y. Uan, W.J. Tseng, “Synthesis, microstructure, and photocatalysis of In2O3 hollow particles”, Ceramics International, 37 (2011) 1775.
[74] J. Jitputti, Y. Suzuki, S. Yoshikawa, “Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution”, Catalysis Communications, 9 (2008) 1265.
[75] Yu Lin, “Photocatalytic activity of TiO2 nanowire arrays”, Materials Letters, 62 (2008) 1246.
[76] V. Etacheri, R. Roshan, V. Kumar, “Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis”, ACS Applied Materials and Interfaces, 4 (2012) 2717.
[77] T.D. Nguyen, C.T. Dinh, T.O. Do, “A general procedure to synthesize highly crystalline metal oxide and mixed oxide nanocrystals in aqueous medium and photocatalytic activity of metal/oxide nanohybrids”, Nanoscale, 3 (2011) 1861.
[78] Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, “Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review”, Nanoscale, 5(2013) 8326.
[79] http://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *