帳號:guest(107.20.123.227)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王建權
論文名稱(中文):探討不鏽鋼球與鋯球在海水和淡水中的淬冷
論文名稱(外文):Quenching of Stainless Steel and Zircaloy Spheres in Subcooled Sea Water and Deionized Water
指導教授(中文):潘欽
口試委員(中文):潘欽
陳紹文
林清發
王琅琛
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:101013518
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:淬冷海水
相關次數:
  • 推薦推薦:0
  • 點閱點閱:276
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
淬冷在核能安全方面有相當程度的影響,特別是在福島核災後,此類的現象值得審慎檢視。本研究係利用304不鏽鋼球與702鋯合金球分別於海水以及去離子水中進行淬冷實驗。金屬球在1000℃的初始溫度下快速沒入不同次冷度的淬冷液中,同時以MX-100數據擷取器和高速攝影機同步進行觀察。就萊登佛洛斯特溫度(Leidenfrost temperature)、膜沸騰持續時間(duration of film boiling)、熱通量的變化以及沸騰現象的觀察等面相進行剖析討論。
結果顯示,不鏽鋼球在去離子水中的膜沸騰持續時間較鋯球為長,所表現出的萊登佛洛斯特溫度和所對應的最低熱通量(minimum heat flux)也較低,但在膜沸騰瓦解進入過度沸騰區域後,所產生的臨界熱通量(critical heat flux)則高於鋯球。兩者間熱容量的差異應是導致此結果的主要原因。
在海水中的淬冷則顯示兩種不同材料的熱球皆以遠高於去離子水中的淬冷速度降溫,其對應之膜沸騰時間極為短暫,臨界熱通率也遠高於去離子水。由高速攝影機的觀察可知,在一般去離子水中,會在金屬表面先產生劇烈的核沸騰,爾後進入膜沸騰。然而,在海水中由於高濃度的鹽類對表面造成腐蝕,致使表面更加粗糙,改變了親水性,大幅提升了熱傳率,使得海水中的淬冷能力高度優於去離子水。
本研究同時也探討不同次冷度之去離子水對淬冷的影響,研究結果顯示鋯球在淬冷的過程中,可觀察到不可凝結氣體的產生。由於表面的高溫足以引發鋯水反應,因此所發現之不可凝結氣體被認為很可能是氫氣。
Quenching is critical for nuclear safety. After a loss of coolant accident, the emergency core cooling system in a nuclear power plant will drive water into the core to cool down the fuel rods at high temperature. The Fukusima accident renews the interest of studying quenching at high temperature. The objective of this study is to investigate the film boiling of two metallic spheres, stainless steel and zircaloy, in de-ionized water and sea water respectively. The diameters of the spheres are 17.5 mm. Each individual sphere is heated up to an initial temperature of ~ 1000 °C in a radiant furnace, and finally plunged into the quench pool by a connected pneumatic cylinder with pressurized air. The temperatures at four corners in the pool are measured with thermocouples. The forming of film boiling and its collapse is visualized and determined by a high-speed camera simultaneously with the temperature. In de-ionized water, with the occurrence of film boiling, the heat transfer measurement is poor as expected, and temperature corresponding to the minimum heat flux is so-called Leidenfrost temperature. The duration of film boiling has an average of 15.3 seconds for the stainless steel and 8.3 seconds for the zircaloy, with high repeatability and reproducibility. The differences of quenching period are mainly due to the diversity of heat capability and metallic density, and such differences also lead to a higher critical heat flux of stainless steel sphere. On the other hand, the average Leidenforst temperature of stainless steel ball is 598℃, and 678℃of zircaloy. The images from high speed camera clearly determinate the forming and the collapsing of the vapor film and the comparison are shown by the graphs.
On the other hand, quenching in sea water shows a totally different result for both metallic shperes. Through the observation of the high speed camara, film boiling collapses within 0.1 second for both spheres and demonstrates a relatively high Leidenfrost temperature and critical heat flux. Because of the high concentration of salt in sea water, surface of the sphere react with the surrounding coolant vigorously, and thus alterd the surface condition into a rough and more hydrophilic state. The increase of the surface roughness and wettability enhances the heat transfer capability and results in a higher critical heat flux to shorten the cooling time. This could be a great benefit by using sea water as the coolant in nuclear power plant during a very serious situation, such as that occurred at Fukushima Daiichi nuclear power plant.
The study also conveys the effect of subcooling of the coolant on the Leidenfrost temperature and the duration of film boiling. The increment of subcooling tends to shorten the duration and raise up the Leidenfrost temperature. Furthermore, non-condensable gas bubble were found in the quenching of zircaloy, as long as the surface temperature was high enough. It is very possible that such gas is hydrogen.
目錄

摘要 ii
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xi
符號說明 xii
第一章 緒論 - 1 -
1-1 前言 - 1 -
1-2 膜沸騰簡介 - 3 -
1-2.1 膜沸騰形成機制 - 3 -
1-2.2 膜沸騰熱傳 - 4 -
1-2.3 膜沸騰破裂 - 5 -
1-3 斷然處置措施(URG Plan) - 6 -
1-4 研究動機 - 8 -
1-5 研究目的 - 9 -
1-6 研究方法 - 10 -
1-7 論文架構 - 11 -
第二章 文獻回顧 - 13 -
2-1 冷卻水流失事故相關分析 - 13 -
2-2 在淬冷液中加入奈米粒子 - 15 -
2-3 其他相關的沸騰研究 - 19 -
2-3.1 不同次冷度下的沸騰實驗 - 19 -
2-3.2 不同表面情況下的沸騰 - 20 -
第三章 實驗系統架設與步驟 - 22 -
3-1 實驗主要組件 - 23 -
3-1.1 測試段 - 23 -
3-1.2 氣壓缸與高溫爐 - 25 -
3-1.3 溫控熱盤和淬冷池 - 26 -
3-1.4 數據讀取裝置和影像擷取裝置 - 28 -
3-2 實驗步驟及方法 - 30 -
第四章 實驗理論分析 - 33 -
4-1 熱通量分析 - 33 -
4-2 均勻系統(lumped system)的分析 - 33 -
4-3 池水與表面接觸的介面溫度 - 35 -
第五章 實驗結果與討論 - 36 -
5-1 不鏽鋼球與鋯球在去離子水中的淬冷比較 - 36 -
5-2 不鏽鋼球於去離子水和海水中淬冷的比較 - 42 -
5-2.1 淬冷曲線的比較 - 42 -
5-2.2 熱通量的分析與比較 - 44 -
5-3 鋯球於去離子水和海水中淬冷的比較 - 47 -
5-3.1 冷卻曲線的比較 - 47 -
5-3.2 熱通量的分析與比較 - 47 -
5-4 熱球入水瞬間的觀察 - 51 -
5-4.1 金屬球在去離子水中的核沸騰與膜沸騰轉換 - 51 -
5-4.2 高溫不鏽鋼球入海水的瞬間觀察 - 54 -
5-4.3 高溫鋯球入海水的瞬間觀察 - 59 -
5-5 淬冷液之次冷度對萊登佛洛斯特溫度的影響 - 62 -
5-6 鋯合金淬冷時產生之不可凝結氣體的觀察 - 67 -
第六章 結論 - 70 -
6-1 本論文研究成果 - 70 -
6-2 未來研究建議 - 72 -
參考文獻 - 73 -
參考文獻
蔡信行,「替代燃料與再生能源」,科學發展,第365期,第 62-67 頁,  2003。
蔡富豐,「日本311 福島核災事件週年省思與感言」,台電核能月刊,第351期,第16-42頁,2012。
Wikipedia, http://en.wikipedia.org/wiki/Nucleate_boiling
潘欽,「沸騰熱傳與雙相流」,國立編譯館,2001。
J. C. Mathes, “Three mile island: the management communication role”, Engineering Management International, Vol. 3, pp.261-268, 1986。
J. M. Broughton, P. Kuan, D. A. Petti, E. L. Tolman, “A Scenario of the Three Mile Island Unit 2 Accident”, Nuclear Technology, Vol. 87, pp.34-53, 1989。
L.A. Bromley, “Heat transfer in stable film boiling”, Chem. Eng. Prog., Vol.46, pp.221-227, 1950 。
G. Berthoud, “Vapor explosions”, Annual Reviews Fluid Mech., Vol. 32, pp. 573-611, 2000。
D. F. Fletcher, R. P. Anderson, “A review of pressure-induced propagation models of the vapour explosion process”, Progress In Nuclear Energy, Vol.23, pp. 137-179, 1990。
J. H. Kim∗, B. K. Choi, J. H. Baek, Y. H. Jeong, “Effect of oxide and hydrogen on the behavior of Zircaloy-4 cladding during the loss of the coolant accident (LOCA)”, Nuclear Engineering and design, Vol. 236, pp.2386-2393, 2006。
K.S. Liang, S.C. Chiang, Y.F. Hsu, H.J. Young, B.S. Pei, L.C. Wang, “The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply”, Nuclear Engineering and design, Vol. 253, pp.259-268, 2012。
邱永聰, 「台灣核電廠斷然處置措施與演練」, 台灣電力公司核能發電處, 2013。
N. Gros, M.F. Camões, C. Oliveira, M.C.R. Silva, “Ionic composition of seawaters and derived saline solutions determined by ion chromatography and its relation to other water quality parameters”, Journal of Chromatography A, Vol. 1210, pp.92-98, 2008。
W. J. Green, K. R. Lawther, “A study of the sensitivity of LOCA heat transfer analysis for a water-cooled reactor system ”, Nuclear Engineering and design, Vol. 47, pp.87-99, 1978。
A. Stritar, B. Mavko, “Influence of steam generator plugging and break size on large-break loss-of-coolant accidents”, Nucl. Safety, Vol. 32, No. 3 (July-September), pp.363-374, 1991。
F. C. Rahim, M. Rahgoshay, S. K. Mousavian, “A study of large break LOCA in the AP1000 reactor containment”, Progress in Nuclear Energy, Vol. 54, pp. 132-137, 2012。
F. C. Rahim, P. Yousefi, E. Aliakbari, “Simulation of the AP1000 reactor containment pressurization during loss of coolant accident”, Progress in Nuclear Energy, Vol. 60, pp. 129-134, 2012。
B. Mavko, A. Stritar, A. Prosek, “Application of code scaling, applicability and uncertainty methodology to large break LOCA analysis of two loop PWR”, Nuclear Engineering and design, Vol. 143, pp.95-109, 1993。
N. Aksan, “Selected Examples of Natural Circulation for Small Break LOCA and Some Severe Accidents.”, In: IAEA Course on Natural Circulation in Water-Cooled Nuclear Power Plants. International Centre for Theoretical Physics (ICTP), Trieste, Italy, 2007。
W.W. Wang, G.H. Su, S.Z. Qiu, W.X. Tian, “Thermal hydraulic phenomena related to small break LOCAs in AP1000”, Progress in Nuclear Energy, Vol. 53, pp.407-419, 2011。
S. J. Han, H. G. Lim, J. E. Yang, “An estimation of an operator’s action time by using the MARS code in a small break LOCA without a HPSI for a PWR”, Nuclear Engineering and design, Vol. 237, pp.749-760, 2007。
Jeong, J.-J., et al., Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3.1., Annals of Nuclear Energy, Vol. 26, pp.1161–1642, 1999。
J. Stuckert, M. Grose, C. Rossger, M. Klimenkov, M. Steinbruck, M. Walter, “QUENCH-LOCA program at KIT on secondary hydriding and results of the commissioning bundle test QUENCH-L0”, Nuclear Engineering and design, Vol. 255, pp.185-201, 2013。
A.D. Vasilieva, J. Stuckertb, “Application of thermal hydraulic and severe accident code SOCRAT/V3 to bottom water reflood experiment QUENCH-LOCA-0”, Nuclear Engineering and design, Vol. 261, pp.352-361, 2013。
S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66. ASME, New York, pp. 99-105, 1995。
A. Ghozatloo, A. Rashidi, M. Shariaty-Niassar, “Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger”, Experimental Thermal and Fluid Science, Vol. 53, pp.136-141, 2014。
Y. R. Sekhara, K.V. Sharmab, R.T. Karupparaja, C.Chiranjeevia, “Heat Transfer Enhancement with 〖Al〗_2 O_3 Nanofluids and Twisted”, Procedia Engineering, Vol. 64, pp.1474-1484, 2013。
J. Albadr, S. Tayal, M. Alasadi, “Heat transfer through heat exchanger using 〖Al〗_2 O_3 nanofluid”, Case Studies in Thermal Engineering, Vol. 1, pp.38-44, 2013。
H. Kim, G. DeWitt, T. McKrell, J. Buongiorno *, L. W. Hu, “On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles”, International Journal of Multiphase Flow, Vol. 35, pp.427-438, 2009。
H. Lotfi, M.B. Shafii, “Boiling heat transfer on a high temperature silver sphere in nanofluid”, International Journal of Thermal Sciences, Vol. 48, pp.2215-2220, 2009。
S. Chun, I.C. Bang, Y. Choo, C. Song, “Heat transfer characteristics of Si and SiC nanofluids during a rapid quenching and nanoparticles deposition effects”, International Journal of Heat and Mass Transfer, Vol. 54, pp.1217–1223, 2011。
A. Bolukbasi, D. Ciloglu, “Pool boiling heat transfer characteristics of vertical cylinder quenched by S_i O_2 water nanofluids”, International Journal of Thermal Sciences, Vol. 50, pp.1013-1021, 2011。
D. Ciloglu, A. Bolukbasi∗, “The quenching behavior of aqueous nanofluids around rods with high temperature”, Nuclear Engineering and Design, Vol. 241, pp. 2519-2527, 2011。
A. Mourgues, V. Hourtane, T. Muller, M. Caron-Charles, “Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid”, International Journal of Heat and Mass Transfer, Vol. 57, pp. 595-607, 2013。
S. W. Lee, S. Y. Chun, C. H. Song, I. C. Bang, “Effect of nanofluids on reflood heat transfer in a long vertical tube”, International Journal of Heat and Mass Transfer, Vol. 55, pp.4766-4771, 2012。
S. W. Lee, S. M. Kim, S. D. Park, I. C. Bang, “Study on the cooling performance of sea salt solution during reflood heat transfer in a long vertical tube”, International Journal of Heat and Mass Transfer, Vol. 60, pp.105-113, 2013。
C. K. Huang, V. P. Carey, “The effects of dissolved salt on the Leidenfrost transition”, International Journal of Heat and Mass Transfer, Vol. 50, pp.269-282, 2007。
I. Sher, R. Harari, R. Reshef, E. Sher, “Film boiling collapse in solid spheres immersed in a sub-cooled liquid”, Applied Thermal Engineering, Vol. 36, pp.219-226, 2012。
V. K. Dhir, G. P. Purohit, “Subcooled film-boiling heat transfer from spheres”, Nuclear Engineering and Design, Vol. 47, pp. 49–66, 1978。
Roy Freuda, Ronen Harari, Eran Sher, “Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion”, Nuclear Engineering and Design, Vol. 239, pp. 722–727, 2009。
H. Kim, B. Truong, J. Buongiorno, L. W. Hu, “On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena”, Applied Physics Letters, Vol. 98, 083121, 2011。
I. U. Vakarelski1, N. A. Patankar, J. O. Marston, D. Y. C. Chan, S. T. Thoroddsen, “Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces” , Nature, Vol. 489, pp.274-277, 2012。
D.S. Wen, B.X. Wang, “Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions”, International Journal of Heat and Mass Transfer, Vol. 45, pp.1739-1747, 2002。
H. J. Jo, H. Se. Ahn, S. H. Kang, M. H. Kim, “A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 5643-5652, 2011。
C. C. Hsu, P. H. Chen, “Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings”, International Journal of Heat and Mass Transfer, Vol. 55, pp. 3713-3719, 2012。
C. L. Whitmarsh, “Review of Zircaloy-2 And Zircaloy-4 properties relevant to N.S. Savannah”, Reactor Design
F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2007。
T. Terai, Y. Takahashi, S. Masumura, T. Yoneoka, “Heat capacity and phase transition of Zircaloy-4”, Journal of Nuclear Materials, Vol. 247, pp. 222-226, 1997。
A. Bolukbasi, D. Ciloglu, “Investigation of heat transfer by means of pool film boiling on vertical cylinders in gravity”, Heat and Mass Transfer, Vol. 44, pp. 141-148。
Michael V. Glazoff, Akira Tokuhiro, Sergey N. Rashkeev, Piyush Sabharwall, “Oxidation and hydrogen uptake in zirconium, Zircaloy-2 and Zircaloy-4: Computational thermodynamics and ab initio calculations”, Journal of Nuclear Materials, Vol. 444, pp. 65-75, 2014。
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *