帳號:guest(18.191.236.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉薏晴
作者(外文):Liu, Yi-Ching
論文名稱(中文):核醫藥物體內劑量計算與體外輻射防護之分析
論文名稱(外文):Analysis for Internal Dose Assessment and External Radiation Protection in Nuclear Medicine
指導教授(中文):許榮鈞
指導教授(外文):Sheu, Rong-Jiun
口試委員(中文):江祥輝
劉鴻鳴
口試委員(外文):Shiang-Huei Jiang
Hong-Ming Liu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:101013504
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:核子醫學劑量評估擬人假體蒙地卡羅方法放射性藥品體內劑量體外劑量
外文關鍵詞:Nuclear medicineDose assessmentAnthropomorphic phantomMonte Carlo methodRadiopharmaceuticalInternal doseExternal dose
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1126
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
  隨著科技的日新月異,近年來核子醫學之臨床應用相關技術發展迅速,並逐漸於醫院各科室之診療領域占有舉足輕重的地位。利用放射性核種衰變放出之能量射線診斷患處,進而產生功能性影像,或內照射治療為核子醫學之核心,然而患者在接受核醫藥物的治療或診斷時,皆會在體內、外產生輻射劑量,由此輻射劑量所造成之防護問題一直是核醫學範疇內相當重要的議題。本研究即分別針對核醫藥物產生之體內劑量與體外輻射曝露進行計算評估,並建立一套完整且具系統性之分析方法。
  針對體內劑量評估問題,本研究以現行核醫界常用之MIRD方法為基礎,利用蒙地卡羅程式與擬人數值假體分別進行比吸收分率與S值之計算,以驗證程式與假體使用方法的可靠度。另選用OLINDA/EXM程式針對三種有興趣之放射性核種:鎝-99m、碘-131及氟-18標記藥物評估患者接受單次診療時可能獲得之全身有效劑量。
  於體外輻射曝露之防護上,本研究不僅參考一般常用之幾何較為簡單的點、線射源模型及複雜卻真實之擬人假體模型,更引入一圓柱射源模型,並針對三種核醫藥物,加以考慮藥物於體內生理分佈情形與否,進行鄰近放射性患者之體外劑量率之估算結果比較;同時藉著圓柱射源模型之衰減、增建效應間之平衡關係討論以及計算於不同圓柱模型半徑與光子能量範圍下之評估結果,證實線射源模型在大部分之核醫藥物能量與病患體型範圍內,提供了一快速且有效之體外劑量率評估方法。此外,更透過臺灣地區碘-131患者之量測數據回顧,發現線射源模型計算值與測量值間之落差主要來自於環境散射劑量的貢獻,一旦將環境散射效應之影響加以評估進線射源模型之內,則可證實線射源模型於估算劑量率上的確具其準確性。
  This study investigated both internal and external dose estimation in nuclear medicine. Three widely used radioactive nuclides 99mTc, 18F, and 131I were considered. For internal dose assessment, the MIRD schema provides a general approach for the dosimetry of incorporated radionuclides. Two crucial factors for dose estimation, the specific absorbed fraction and S-value, were calculated by Monte Carlo simulations with anthropomorphic phantoms and the results were found to be generally consistent with literature values. The OLINDA/EXM computer software was also used to estimate the resulting effective doses for patients administered three interested radiopharmaceuticals. For external radiation protection, various source models, ranging from simplified point, line, and cylinder sources to high-fidelity anthropomorphic phantoms were applied to calculate dose rates near a nuclear medicine patient. This systematical comparison led to the following observations and conclusions. The Monte Carlo calculated results based on detailed phantom models are realistic but time-consuming. The point source model is simple but too conservative while both the line and cylinder source models gave reasonable predictions. The line source model was found to be comparable to the cylinder source model due to the cancellation of radiation attenuation and buildup in the source volume. The effects of various source energies and cylinder sizes on the cancellation were investigated. The line source model, relatively easy in calculation and predicting dose rates slightly conservative than the phantom results by approximately 7-18% for the three radionuclides, is therefore considered the most practical method of dose calculation for patient release criteria. An application of the line source model to 51 post-thyroidectomy patients in Taiwan was demonstrated and its comparison with measurements was discussed. The agreement between calculations and measurements is reasonable after taking the room-scattering effect into account.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 核醫劑量理論 4
2.1 診療原理及特色 4
2.2 核醫藥物 6
2.3 體內劑量 9
2.4 體外曝露 13
第三章 研究材料與方法 16
3.1 擬人數值假體與放射性藥品特性 16
3.1.1 擬人數值假體 16
3.1.2 放射性藥品特性 22
3.2 體內劑量計算方法與工具 28
3.2.1 MCNPX 29
3.2.2 OLINDA/EXM 35
3.3 體外劑量計算方法與工具 37
3.3.1 公式解析法與點、線射源模型 38
3.3.2 MicroShield與圓柱射源模型 41
3.3.3 MCNPX與擬人假體射源模型 44
第四章 體內劑量計算結果 46
4.1 比吸收分率與S值之計算 46
4.1.1 比吸收分率 46
4.1.2 S值 53
4.2 核醫診療患者全身有效劑量評估 57
第五章 體外劑量計算結果 65
5.1 不同模型計算結果比較 65
5.2 擬人數值假體模型差異 68
5.3 圓柱射源模型填充材料影響 69
5.4 線射源模型之有效性 71
5.5 碘-131治療甲狀腺機能亢進患者之劑量率評估 73
第六章 體外劑量評估模型之應用 76
6.1 基隆長庚醫院碘-131甲狀腺癌患者治療 76
6.2 例行量測數據結果分析 79
6.3 線射源患者模型評估與測量結果之比較 85
第七章 結論與建議 92
參考文獻 95
1.American Nuclear Society. Nuclear analysis and design of concrete radiation shielding for nuclear power plants. La Grange Park, IL: American National Standards Institute, American Nuclear Society; ANSI/ANS-6.4.2-2006; 2006.
2.Cristy M and Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources. Oak Ridge, TN: Oak Ridge National Laboratory; Report ORNL/TM-8381/V1-V7; 1987.
3.D’ Arceuil HE. Technetium-99m tetrofosmin: use for myocardial perfusion imaging in the detection of coronary artery disease. Reports in Medical Imaging 3:1-10; 2010.
4.de Carvalho AB Jr, Stabin MG, Siegel JA, Hunt J. Comparison of point, line and volume dose calculations for exposure to nuclear medicine therapy patients. Health Phys 100:185-190; 2011.
5.GE Healthcare, Medi-Physics, Inc. Myoview package insert. (Amersham—US) Arlington Heights, IL: GE Healthcare, Medi-Physics, Inc.; Recommendation 4; 1996.
6.Grigsby PW, Siegel BA, Baker S, Eichling JO. Radiation exposure from outpatient radioactive iodine (131I) therapy for thyroid carcinoma. JAMA 283:2272-2274; 2000.
7.Grove Software Inc. MicroShield user’s manual, version 8.02. Lynchburg, VA: Grove Software Inc.; 2009.
8.Higley B, Smith FW, Smith T, Gemmell HG, Das Gupta P, Gvozdanovic DV, Graham D, Hinge D, Davidson J, Lahiri A. Technetium-99m-1,2-bis[bis(2-ethoxyethyl) phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 34:30-38; 1993.
9.International Commission on Radiological Protection. Limits for intakes of radionuclides by Workers. Oxford: Pergamon Press; ICRP Publication 30; 1979.
10.International Commission on Radiological Protection. Data for use in protection against external radiation. Oxford: Pergamon Press; ICRP Publication 51; 1987.
11.International Commission on Radiological Protection. Radiation dose to patients from radiopharmaceuticals. Oxford: Pergamon Press; ICRP Publication 53; 1987.
12.International Commission on Radiological Protection. 1990 recommendations of the International Commission on Radiological Protection. Oxford: Pergamon Press; ICRP Publication 60; 1991.
13.International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides - part 4 inhalation dose coefficients. Oxford: Pergamon Press; ICRP Publication 71; 1995.
14.International Commission on Radiological Protection. Conversion coefficients for use in radiological protection against external radiation. Oxford: Pergamon Press; ICRP Publication 74; 1996.
15.International Commission on Radiological Protection. Release of patients after therapy with unsealed radionuclides. Oxford: Pergamon Press; ICRP Publication 94; 2004.
16.International Commission on Radiological Protection. Radiation dose to patients from radiopharmaceuticals – addendum 3 to ICRP Publication 53. Oxford: Pergamon Press; ICRP Publication 106; 2008.
17.International Commission on Radiological Protection. Adult reference computational phantoms. Oxford: Pergamon Press; ICRP Publication 110; 2009.
18.Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, Chiu KW, Edwards B, Gill HK, McPartlin M, Nagle KR, Latham IA, Pickett RD, Storey AR, Webbon PM. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 34:222-227; 1993.
19.Metting NF. Ionizing radiation dose ranges (sievert) chart. Low Dose Radiation Research Program, Office of Science, U.S. Department of Energy; 2010.
http://lowdose.energy.gov/pdf/DoseRanges.pdf
20.National Council on Radiation Protection and Measurements. Precautions in the management of patients who have received therapeutic amounts of radionuclides. Bethesda, MD: NCRP; Report No.37; 1970.
21.Pelowitz DB (Eds). MCNPX user’s manual, version 2.7.0. Los Alamos, NM: Los Alamos National Laboratory; LA-CP-11-00438; 2011.
22.Siegel E. The beginnings of radioiodine therapy of metastatic thyroid carcinoma: a memoir of Samuel M. Seidlin, M. D. (1895-1955) and his celebrated patient. Cancer Biother. Radiopharm. 14:71-79; 1999.
23.Siegel JA, Marcus CS, Sparks RB. Calculating the absorbed dose from radioactive patients: the line-source versus point-source model. J Nucl Med 43:1241-1244; 2002.
24.Smith DS and Stabin MG. Exposure rate constants and lead shielding values for over 1,100 radionuclides. Health Phys 102:271-291; 2012.
25.Snyder WS, Ford MR, Warner GG, Fisher HL Jr. Estimates of absorbed fractions for monoenergetic photon source uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee (MIRD) Pamphlet No.5, Supplement No.3. J Nucl Med 10:5-52; 1969.
26.Snyder WS, Ford MR, Warner GG, Watson SB. “S,” absorbed dose per unit cumulated activity for selected radionuclides and organs. Medical Internal Radiation Dose Committee (MIRD) Pamphlet No.11. New York, NY: The Society of Nuclear Medicine; 1975.
27.Snyder WS, Ford MR, Warner GG. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee (MIRD) Pamphlet No.5, Revised. New York, NY: The Society of Nuclear Medicine; 1978.
28.The Society of Nuclear Medicine and Molecular Imaging PET Center of Excellence and the Center of Molecular Imaging Innovation and Translation. [18F]fluorodeoxyglucose, 18F-FDG or FDG. Reston, VA: The Society of Nuclear Medicine and Molecular Imaging; 2012.
http://interactive.snm.org/docs/PET_PROS/FDG_K_Zukotynski.pdf
29.Sparks RB, Siegel JA, Wahl RL. The need for better methods to determine release criteria for patients administered radioactive material. Health Phys 75:385-388; 1998.
30.Stabin MG. Radiation protection and dosimetry: an introduction to health physics. New York: Springer; 2007.
31.Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023-1027; 2005.
32.Stabin MG, Watson EE, Marcus CS, Salk RD. Radiation dosimetry for the adult female and fetus from Iodine-131 administration in hyperthyroidism. J Nucl Med 32:808-813; 1991.
33.Stewart BW and Wild CP (Eds). World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.
34.The Radiation Dose Assessment Resource, RADAR. http://www.doseinfo-radar.com/ 2013.
35.U.S. Nuclear Regulatory Commission. Release of patients administered radioactive materials. Washington, DC: U.S. Government Printing Office; Regulatory Guide 8.39; 1997.
36.Willegaignon J, Guimarães MIC, Stabin MG, Sapienza MT, Malvestini LF, Marone MMS, Sordi GMAA. Correction factors for more accurate estimates of exposure rates near radioactive patients: experimental, point, and line source models. Health Phys 93:678-688; 2007.
37.Xu XG and Eckerman KF. Handbook of Anatomical Models for Radiation Dosimetry. London: Taylor & Francis; 2009.
38.Yi Y, Stabin MG, McKaskle MH, Shone MD, Johnson AB. Comparison of measured and calculated dose rates near nuclear medicine patients. Health Phys 105:187-191; 2013.
39.Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, Drexler G. The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys 27:153-164; 1988.
40.國家衛生研究院. 2005-2008國人身高、體重、身體質量指數狀況 http://nahsit.nhri.org.tw/node/14/ 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *