帳號:guest(3.21.106.69)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳世鳴
論文名稱(中文):HR-224鎳基超合金於超臨界水環境下之腐蝕行為研究
論文名稱(外文):Corrosion Behavior of HR-224 Ni-based Superalloy in Supercritical Water Environment
指導教授(中文):開執中
口試委員(中文):葉宗洸
開物
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:101013502
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:106
中文關鍵詞:鎳基超合金超臨界水腐蝕
相關次數:
  • 推薦推薦:0
  • 點閱點閱:111
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
超臨界水反應器(Supercritical Water-Cooled Reactor, SCWR)為第四代核反應器設計之一,其操作環境高於水的臨界點(374℃、22.1 MPa),具有比輕水式反應器更高的熱轉換效率,大約為45% (現今輕水式反應器熱轉換效率為33%)。相對於現今輕水式反應器,超臨界水反應器的設計簡化且縮小反應槽體積,因而更能有效提升安全性且降低建廠成本。然而,超臨界水具有可無限溶解無極性氣體的特性、高運轉溫度以及高功率密度加劇了輻射水解的效應,使爐心水化學環境之腐蝕性比輕水式反應器來的更加嚴重。因此,發展可適用於超臨界水反應器中高溫、高腐蝕性和高應力爐心環境中的金屬材料,即顯得相當重要。
本論文中,將未經處理之 HR-224鎳基超合金置於模擬超臨界水環境迴路中進行測試,在實驗溫度為700℃、壓力為24.8 MPa和溶氧量為8.3 ppm的環境下,量測腐蝕後質量之改變,並透過電子顯微鏡技術及X-ray繞射分析來探討其腐蝕機制。腐蝕時間(t)在5至500小時以及500至1300小時間,單位面積之質量變化量(∆w/A)分別遵守∆w/A=2.315×〖10〗^(-2) t^0.389 和∆w/A=1.556×〖10〗^(-3) t^0.851之趨勢。腐蝕100到500小時後的試片,從橫截面的分析上發現氧化層為三層結構,由外而內分別為spinel Ni(Cr, Fe)2O4、Cr2O3和不連續Al2O3,在某些區域可發現缺乏氧訊號而鐵與鎳成分比例相當高的顆粒介於Cr2O3和Al2O3之間;在700小時之後,spinel氧化層厚度大幅增加,先前劃分的最內層Al2O3層以下有新的氧化物生成,顯示原先形成的不連續Al2O3層失去其保護性。另外,與預長氧化層處理之試片在相同環境下腐蝕的實驗結果比較,歸納出以下結果:在高溫空氣環境中形成的連續Al2O3層,在8.3 ppm 、700℃超臨界水環境中,依舊保持其完整性,經長時間腐蝕之後仍能發揮保護效果。
摘要 i
Abstract iii
誌謝 v
目錄 vii
表目錄 ix
圖目錄 x

第一章 前言與研究動機 1

第二章 文獻回顧 5
2.1 超臨界水核反應器之發展進程 5
2.2 超臨界水之特性 7
2.3 金屬材料於超臨界水環境下之腐蝕行為 8
2.3.1肥粒麻田鐵 (Ferritic-martensitic steel) 8
2.3.2氧化物散布強化鋼 (Oxide dispersion strengthened (ODS) steel) 9
2.3.3奧斯田不銹鋼 (Austenitic stainless steel) 11
2.3.4可形成氧化鋁層不鏽鋼 (Alumina-forming austenitic (AFA) stainless steel) 12
2.3.5鎳基超合金 (Ni-base superalloy) 13
2.4 鎳基超合金的發展與應用 15

第三章 實驗原理與方法 43
3.1 腐蝕實驗 43
3.1.1合金試片製備 43
3.1.2超臨界水循環系統 43
3.2 實驗分析方法 45
3.2.1電子顯微鏡原理 45
3.2.2電子束與物質之交互作用 46
3.2.3穿透式電子顯微鏡系統(TEM) 47
3.2.4電子槍 47
3.2.5能量散布能譜儀(EDS) 49
3.2.6穿透式電子顯微鏡(TEM)試片製備 50
3.2.7掠角X光繞射分析儀(GIXRD) 51

第四章 結果與討論 59
4.1 腐蝕動力學 59
4.2 氧化層分析 60
4.2.1 表面分析 60
4.2.2 TEM橫截面分析 61
4.2.3 GIXRD繞射分析 63
4.3腐蝕機制 64
4.3.1氧化層結構變化 64
4.3.2氧化層厚度變化 67
4.3.3 Al2O3層之連續性對抗腐蝕能力的影響 67
4.4析出相之微結構分析 68

第五章 結論 96

第六章 未來研究方向 98

參考文獻 99

[1] 世界氣象組織(WMO)2012年溫室氣體公報
[2] The State of Compliance in the Kyoto Protocol, Corina Haita, ICCG.
[3] 能源產業技術白皮書, 經濟部能源局, 編訂於2012
[4] Daniel A. Lashof and Dilip R. Ahuja, “Relative contributions of greenhouse gas emissions to global warming”, Nature, 344, pp. 529-531, 1990.
[5] 台灣電力公司101年年報
[6] D. Guzonas, “SCWR MATERIAL AND CHEMISTRY STATUS OF ONGOING RESEARCH,” GIF Symposium, Paris, France, 9-10 September, 2009.
[7] Supercritical Water Reactor (SCWR) Survey of Materials Experience and R&D Needs to Assess Viability, INEEL/EXT-03-00693 Revision 1, September 2003.
[8] M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Maziasz, B.A. Pint, C.T. Liu, Z.P. Lu and H. Bei, “The Development of Alumina-Forming Austenitic stainless steels for high-temperature structural Use,” JOM, July 2008.
[9] Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer and E.A. Payzant, “Creep-Resistant, Al2O3-Forming Austenitic Stainless Steel,” Science 316 (2007)
[10] V.P. Deodeshmukh, S.J. Mathhews and D.L. Klarstrom,” High temperature oxidation performance of a new alumina-forming Ni-Fe-Cr-Al alloy in flowing air,”International Journal of Hydrogen Energy 36 (2011) 4580-4587.

[11] Generation IV International Forum, “GIF R&D Outlook for Generation IV Nuclear Energy Systems,” 21 August 2009.
[12] H. Khartabil, “SCWR: Overview,” GIF Symposium, Paris, France, 9-10 September, 2009.
[13] “Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production,” INEEL/EXT-03-01277, September 2003.
[14] “A Technology Roadmap for Generation IV Nuclear Energy Systems,” U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002.
[15] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren and C. Pister, “Corrosion and stress corrosion cracking in supercritical water,” Journal of Nuclear Materials 371 (2007) 176–201.
[16] P. Kritzer, "Corrosion in high-temperature and supercritical water and aqueous solutions: influence of solution and material parameters,” SCR-2000, 6–8 November, 2000, Tokyo.
[17] K. Johnston and C. Haynes, Am. Inst. Chem. Eng. J. 33 (1987) 2007.
[18] W.G. Cook and R.P. Olive, “Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions,” Corrosion Science 55 (2012) 326–331.
[19] W.G. Cook and R.P. Olive, “Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions,” Corrosion Science 58 (2012) 284–290.
[20] W.G. Cook and R.P. Olive, “Pourbaix diagrams for chromium, aluminum and titanium extended to high-subcritical and low-supercritical conditions,” Corrosion Science 58 (2012) 291–298.
[21] S. Kashahara, J. Kuniya, K. Moriya, N. Saito and S. Shiga, GENES4/ANP2003, Kyoto, Japan. Paper 1132, September (2003).
[22] J. Jang, et al., “Corrosion Behavior of 9Cr F/M Steels in Supercritical Water,” Proc. ICAPP’05, Seoul, Korea, Paper 5136, May, 2005.
[23] J. Kaneda et al., “Corrosion Film Properties of the Candidate Materials for the Fuel Claddings of the SupercriticalWater Cooled Power Reactor,” Proc. ICAPP’05, Seoul, Korea, Paper 5594, May, 2005.
[24] P. Ampornrat and G.S. Was,”Oxidation of ferritic–martensitic alloys T91, HCM12A and HT-9 in supercritical water”, Journal of Nuclear Materials 371 (2007) 1–17.
[25] N.Q. Zhang, H. Xu, B.R. Li, Y. Bai and D.Y. Liu, “Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water,” Corrosion Science 56 (2012) 123-128.
[26] H.S. Cho, A. Kimura, S. Ukai and M. Fujiwara, “Corrosion properties of oxide dispersion strengthened steels in super-critical water environment,” Journal of Nuclear Materials 329–333 (2004) 387–391.
[27] H.S. Cho and A. Kimura, “Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water,” Journal of Nuclear Materials 367–370 (2007) 1180–1184.
[28] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and T.F. Abe, “Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems,” Journal of Nuclear Materials 417 (2011) 176–179.
[29] J. Isselin, R. Kasada and A. Kimura, “Corrosion behaviour of 16%Cr–4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment, ” Corrosion Science 52 (2010) 3266–3270.
[30] J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and F. Abe, “Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels,” Journal of Nuclear Materials 417 (2011) 1225–1228.
[31] G.S. Was, S. Teysseyre and Z. Jiao, “Corrosion of Austenitic Alloys in Supercritical Water”, Corrosion, Vol. 62, No. 11 (2006) 989-1005.
[32] X. Gao, X.Q. Wu, Z. Zhang, H. Guan and E.H. Han, “Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water,” Journal of Supercritical Fluids 42 (2007) 157-163.
[33] M.C. Sun, X.Q. Wu, Z. Zhang and E.H. Han, “Oxidation of 316 stainless steel in supercritical water,” Corrosion Science 51 (2009) 1069-1072.
[34] X.Q. Xu, X.F. Zhang, G.L. Chen and Z.P. Lu, “Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels,” Materials Letters 65 (2011) 3285–3288.

[35] S.H. Nie, Y. Chen, X. Ren, K. Sridharan and T.R. Allen, “Corrosion of alumina-forming austenitic steel Fe–20Ni–14Cr–3Al–0.6Nb–0.1Ti in supercritical water,” Journal of Nuclear Materials 399 (2010) 231–235.
[36] “Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production,” INEEL/EXT-04-02530, January 2005.
[37] P. Xu, L.Y. Zhao, K. Sridharan and T.R. Allen, “Oxidation Behavior of Grain Boundary Engineered Alloy 690 in Supercritical Water Environment," Journal of Nuclear Materials 422 (2012) 143–151.
[38] L. Tan, X. Ren, K. Sridharan and T.R. Allen, “Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants,” Corrosion Science 50 (2008) 3056–3062.
[39] Jeremy Bischoff, Arthur T. Motta, Chad Eichfeld, Robert J. Comstock, Guoping Cao and Todd R. Allen, “Corrosion of ferritic–martensitic steels in steam and supercritical water,” Journal of Nuclear Materials 441 (2013) 604–611.
[40] Xiangyu Zhong, En-Hou Han and Xinqiang Wu, “Corrosion behavior of Alloy 690 in aerated supercritical water,” Corrosion Science 66 (2013) 369–379.
[41] Qiang Zhang, Rui Tang, Kaiju Yin, Xin Luo and Lefu Zhang,” Corrosion behavior of Hastelloy C-276 in supercritical water,” Corrosion Science 51 (2009) 2092–2097.
[42] Kai-Hsiang Chang, Jih-Hsuan Huang, Cun-Bin Yan, Tsung-Kuang Yeh, Fu-Rong Chen and Ji-Jung Kai, “Corrosion behavior of Alloy 625 in supercritical water environments,” Progress in Nuclear Energy 57 (2012) 20–31.
[43] Kai-Hsiang Chang, Shih-Ming Chen, Tsung-Kuang Yeh and Ji-Jung Kai, “Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700℃,” Corrosion Science 81 (2014) 21–26.
[44] C.T. Sims and W.C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972.
[45] N.F. Mott and F.R.N. Nabarro, Report of the Conference on Strength of Solids, Physical Society (1948) 1-19.
[46] R.M.N. Pelloux and N.J. Grant, Trans. Met. Soc. AIME 218 (1960) 232-237.
[47] R.L. Fleischer, Acta Met. 11 (1963) 203-209.
[48] R.G. Davies and N.S. Stoloff, Trans. Met. Soc. AIME 233 (1965) 714-719.
[49] N.S. Stoloff and R.G. Davies, Prog. Mat. Sci. 13 No. 1 (1966) 3-84.
[50] P. Beardmore, R. G. Davies and T. L. Johnston, Trans. Met. Soc. AIME 245 (1969) 1537-1545.
[51] R. G. Davies and T. L. Johnston, Ordered Alloys: Structural Applications and Physical Metallurgy, Claitors, Baton Rouge, Louisiana (1970) 447-470.
[52] S. M. Copley and B. H. Kear, Trans. Met. Soc. AIME 239 (1967) 984-992.
[53] C. L. Corey and B. Lisowsky, Trans. Met. Soc. AIME 239 (1967) 239-243.
[54] G.R. Leverant, M.Gell and S.W. Hopkins, Proc. Second Int. Conf. Strength Met. Alloys 3 (1970) 1141-1144.
[55] F.F. Barder, Discussion of : Eiselstein, H.L., in Advances in the Technology of Stainless Steels and Related Alloys, STP 369, ASTM, Philadelphia, Pa. (1965) 78-79.
[56] H.J. Wagner and A.M. Hall, “Physical Metallurgy of Alloy 718,” DMIC Report 217, Battelle Memorial Institute, Columbus, Ohio, (June 1, 1965).
[57] J.F. Bader, Metal Progress 81 (May, 1962) 72-76.
[58] R.F. Decker, and J.R. Mihalisin, Trans. ASM 62 (1969) 481-489.
[59] D.F. Paulonis, F.M. Oblak and D.S. Duvall, Trans. ASM, 62 (1969) 611-622.
[60] I. Kirman and D.H. Warrington, Met. Trans., 1 (1970) 2667-2675.
[61] 黃日鉉,「Inconel 625超合金於超臨界水環境下之腐蝕行為研究」國立清華大學核子工程與科學研究所,碩士論文,中華民國九十七年
[62] 科儀叢書3,材料電子顯微鏡學,國科會精儀中心
[63] 汪建民、杜正恭,材料分析,中國材料科學學會 (1998)
[64] 顏存濱,「Inconel 625超合金於超臨界水環境下氧化層結構變化之研究」國立清華大學工程與系統科學系,碩士論文,中華民國九十九年
[65] 張凱翔,「Inconel 625鎳基超合金於不同溶氧量超臨界水環境下之腐蝕行為研究」國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零一年
[66] 陳世鳴、劉宇晨,「Incoloy 800H在高溫高壓超臨界水環境下之腐蝕微結構分析」,國立清華大學工程與系統科學系,專題報告,中華民國一百零一年
[67] Ihsan Barin, Thermochemical Data of Pure Substances,Third edition,VCH.
[68] H. M. Tawancy, Practical engineering failure analysis, New York:Marcel Dekker , (2004) 381.
[69] M.J. Graham and R.J. Hussey, Transport in growing oxide films, in: M.A. Dayananda, S.J. Rothman, and W.E. King (Eds.), Oxidation of Metals and Associated Mass Transport, The Metallurgical Society, Inc., Warrendale, PA, 1987, p. 85.
[70] R.E. Lobnig, H.P. Schmidit, K. Hennesen and H.J. Grabke, “Diffusion of Cations in Chromia Layers Grown on Iron-Base Alloys,”Oxidation of Metals 37 (1992) 81-93.
[71] X. Ren, K. Sridharan and T.R. Allen, “Corrosion behavior of alloys 625 and 718 in supercritical water,” Corrosion 63 (2007) 603–612.
[72] R.H. Doremus,”Diffusion in alumina,”Journal of Applied Physics 100 ,101301 (2006) 1-17.
[73] C.E. Campbell, W.J. Boettinger and U.R. Kattner,”Development of a diffusion mobility database for Ni-base superalloys,” Acta Materialia 50 (2002) 775-792.
[74] S.J. Rothman, L.J. Nowicki and G.E. Murch,”Self-diffusion in austenitic Fe-Cr-Ni alloys,” J. Phys. F: Metal Phys. 10 (1980) 383-398.
[75] C.S. Giggins and F.S. Pettit, “Oxidation of Ni-Cr-Al Alloys Between 1000 and 1200℃,” J. Electrochem. Soc.:SOLID STATE SCIENCE (1971) 1782-1791.
[76] 劉宇晨,「預長氧化層HR-224超合金於超臨界水環境下之腐蝕研究」國立清華大學工程與系統科學系,碩士論文,中華民國一百零三年
[77] A.Devaux, L. Naze, R. Molins, A. Pineau, A. Organista, J.Y. Guedou, J.F. Uginet and P. Heritier,”Gamma double prime precipitation kinetic in Alloy 718,” Materials Science and Engineering: A 486 (2008) 117-122.
[78] D. Guzonas and R. Novotry,”Supercritical water-cooled reactor materials-Summary of research and open issues,” Progress in Nuclear Energy (2014) 1-12.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *