帳號:guest(18.191.211.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅少軒
作者(外文):Lo, Shao Hsuan
論文名稱(中文):以濕式塗佈技術進行OLED發光元件大型化之分析
論文名稱(外文):The Research and Development of Large-Sized OLED Lighting Devices through Wet Coating Technologies
指導教授(中文):劉大佼
指導教授(外文):Liu, Ta Jo
口試委員(中文):吳平耀
汪上曉
李育德
楊之光
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:100032805
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:142
中文關鍵詞:狹縫式塗佈可撓式旋轉塗佈有機發光二極體
外文關鍵詞:slot die coatingflexible OLED devicespin coating,
相關次數:
  • 推薦推薦:0
  • 點閱點閱:308
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目標為分析建立製作大型可撓式OLED照明元件之方法,大型之面積定義為3×3cm2,本研究分為三個階段進行實驗,以達到預期之目標。
本研究執行之方式為先以旋轉塗佈技術建立基本發光組成,包括各層成份及厚度並確定其性質。經研究後解決了流星紋與顯色不均等塗佈缺陷,並確定OLED綠光元件結構使用ITO/PEDOT:PSS/HTL/EML/LiF/Al*的三有機層結構,元件之驅動電壓為3.7伏特、最高亮度為12.5伏特之2066 cd/m2、最高功率效率為5.5伏特之10.8 lm/W,符合一般照明元件之需求。
其次以狹縫式塗佈法製作有機發光二極體時,所遇到的各種塗佈缺陷,包括:a. 塗佈模頭出液不均; b. 橫紋; c. HTL之蜂巢紋; d. 直紋; e. 使用流平法解決膜面缺陷。本研究一一找出上述塗佈缺陷之成因與解決方法。最後以狹縫式塗佈法製作之OLED元件發光特性如下所述,驅動電壓為4.9伏特、最高亮度為17.5伏特之2063 cd/m2、最高功率效率為6伏特之7 lm/W,只有功率效率略低於以旋轉塗佈法製作之元件,證明以狹縫式塗佈法製作OLED元件是可行的。
本研究亦測試製作可撓式元件之可行性,為了配合OLED元件的功函數結構以及製作時之溫度等條件,本研究選擇了ITO/PEN基板。獲得的可撓式元件之最高亮度為12伏特之1930 cd/m2、最高功率效率為5伏特之7.8 lm/W,證明了只要功函數、基板電阻等條件符合,以濕式塗佈技術製作大型可撓式OLED元件是可行的。
關鍵字: 狹縫式塗佈、旋轉塗佈、可撓式、有機發光二極體
This research is aimed at the development of large-sized OLED lighting devices through wet coating technologies. The large-size is defined as 3×3cm2. It takes three steps to reach the research goal.
Spin coating process was first adopted to determine the structure, thickness and lighting efficiency of the devices, and defects such as comets and mura had to be removed. The structure of optimum green light OLED devices was found to be ITO/PEDOT:PSS/hole transport layer/emission layer/LiF/Al. These devices achieved a maximum power efficiency of 10.8 lm/W at 5.5 V, and a maximum luminance of 2266 cd/m2 at 12.5 V.
The second step was to apply the slot die coating technology to fabricate OLED devices, and removed coating defects such as : a. coating non-uniformities, b. cross-web streaks, c. B’enard cell, and d. longitudinal streaks. The devices made finally achieved a maximum power efficiency of 7 lm/W at 6 V, and a maximum luminance of 2063 cd/m2 at 17.5 V, which are compatible to the results based on spin coating.
The third step were to examine the feasibility of making the flexible OLED devices. To fit the work function and process temperature, ITO/PEN substrates was selected. The flexible devices had the maximum luminance of 1930 cd/m2 at 12 V, and a maximum power efficiency of 7.8 lm/W at 5 V, which are slightly lower than those with glass substrate but it is generally acceptable.
It has been proven that large-sized flexible OLED devices could be made by slot die coating technologies.
Key words: slot die coating, spin coating, flexible OLED device
謝 誌 i
摘 要 ii
Abstract iii
目錄 iv
圖目錄 vii
第一章 緒論 1
第二章 文獻回顧 4
2.1 有機發光二極體之歷史簡介 4
2.2 OLED元件結構 10
2.3 OLED元件發光原理 12
2.3.1 磷光與螢光 13
2.4 OLED製程技術 16
2.4.1 真空蒸鍍製程 16
2.4.2 濕式製程 17
a.旋轉塗佈 (spin coating) 19
b.狹縫式塗佈技術 (slot die coating technology) 20
c.凹版印刷技術(gravure printing)[13] 22
d.卷對卷(roll to roll)塗佈技術: 24
2.4.3溼式塗佈技術應用於OLED 製程所面臨挑戰 25
2.5 有機發光二極體於照明設備之應用 26
2.6 狹縫式塗佈技術簡介 31
2.7 旋轉塗佈法之膜厚預測方程式 37
第三章 實驗方法 40
3.1 實驗藥品 40
3.2 儀器與設備 48
3.3 元件電路設計 50
3.4 實驗流程與步驟 51
3.4.1 清潔基板 53
3.4.2 配置各層溶液 54
3.4.3 元件製作 55
3.4.4 元件效率量測 59
第四章 結果與討論 60
4.1 以旋轉塗佈法製作OLED元件 60
4.1.1 發光層的退火條件對小面積元件效率之影響 61
4.1.2 大面積元件之可行性探討 64
a. 流星纹(comets)與顏色不均(mura)之成因 64
b. 元件面積對元件效率之影響 72
4.1.3電洞傳輸層對元件效率之影響 75
4.1.4 26DczPPy主體材料系統之元件效率 80
4.1.5 TEM測定膜厚 85
4.1.6 以旋轉塗佈法製作OLED元件之小結 88
4.2 以狹縫式塗佈法製作大面積OLED元件 90
4.2.1 對於膜厚不均之討論與改善 93
4.2.2 電洞傳輸層(HTL)的蜂巢狀缺陷 97
4.2.3 橫紋缺陷之討論與改善 101
4.2.4 直紋缺陷之討論與改善 104
4.2.5 以流平現象(leveling)改善橫紋直紋缺陷之討論 113
4.2.6 以狹縫式塗佈法製作之OLED元件發光效率探討 117
4.2.7 以狹縫式塗佈法製作OLED綠光元件之小結 122
4.3 以濕式塗佈製程製作可撓式OLED元件 124
第五章 結論與建議 129
References 134
附錄:簡寫與全名 142
1. Tang, C. and VanSlyke, S., Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
2. Bernanose, A., Comte, M., and Vouaux, P., A new method of emission of light by certain organic compounds. J. Chim. Phys, 1953. 50: p. 64.
3. Helfrich, W. and Schneider, W., Recombination radiation in anthracene crystals. Physical Review Letters, 1965. 14(7): p. 229.
4. Helfrich, W. and Schneider, W., Transients of Volume‐Controlled Current and of Recombination Radiation in Anthracene. The Journal of Chemical Physics, 2004. 44(8): p. 2902-2909.
5. Roberts, L. C., Tang, C. W., and VanSlyke, S. A., Electroluminescent device with organic luminescent medium. 1988, Google Patents.
6. Tang, C., VanSlyke, S., and Chen, C., Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616.
7. Burroughes, J., Bradley, D., Brown, A., Marks, R., Mackay, K., Friend, R., Burns, P., and Holmes, A., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539-541.
8. Bradley, D. D., Burroughes, J. H., and Friend, R. H., Electroluminescent devices. 1993, Google Patents.
9. Era, M., Adachi, C., Tsutsui, T., and Saito, S., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 1991. 178(5): p. 488-490.
10. Shi, J. and Tang, C., Doped organic electroluminescent devices with improved stability. Applied physics letters, 1997. 70(13): p. 1665-1667.
11. Baldo, M., O'brien, D., You, Y., Shoustikov, A., Sibley, S., Thompson, M., and Forrest, S., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
12. Sun, Y. and Forrest, S. R., Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature photonics, 2008. 2(8): p. 483-487.
13. Chung, D.-Y., Huang, J., Bradley, D. D., and Campbell, A. J., High performance, flexible polymer light-emitting diodes (PLEDs) with gravure contact printed hole injection and light emitting layers. Organic Electronics, 2010. 11(6): p. 1088-1095.
14. Chen, C.-Y., Chang, H.-W., Chang, Y.-F., Chang, B.-J., Lin, Y.-S., Jian, P.-S., Yeh, H.-C., Chien, H.-T., Chen, E.-C., and Chao, Y.-C., Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell. Journal of Applied Physics, 2011. 110(9): p. 094501.
15. Sandström, A., Dam, H. F., Krebs, F. C., and Edman, L., Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nature communications, 2012. 3: p. 1002.
16. Höfle, S., Pfaff, M., Do, H., Bernhard, C., Gerthsen, D., Lemmer, U., and Colsmann, A., Suppressing molecular aggregation in solution processed small molecule organic light emitting diodes. Organic Electronics, 2014. 15(1): p. 337-341.
17. Ben Khalifa, M., Vaufrey, D., and Tardy, J., Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs. Organic Electronics, 2004. 5(4): p. 187-198.
18. Yan, H., Scott, B. J., Huang, Q., and Marks, T. J., Enhanced Polymer Light‐Emitting Diode Performance Using a Crosslinked‐Network Electron‐Blocking Interlayer. Advanced Materials, 2004. 16(21): p. 1948-1953.
19. Dodabalapur, A., Organic light emitting diodes. Solid State Communications, 1997. 102(2): p. 259-267.
20. Waser, R., Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices. MRS BULLETIN, 2004.
21. D'Andrade, B. W. and Forrest, S. R., White organic light‐emitting devices for solid‐state lighting. Advanced Materials, 2004. 16(18): p. 1585-1595.
22. Li, F., Chen, Z., Liu, C., and Gong, Q., Improvement in performance of organic light-emitting diodes by adjusting charge-carrier mobility in organic/inorganic hybrid hole transporting layer. Chemical physics letters, 2005. 412(4): p. 331-335.
23. Kim, S. H., Jang, J., and Lee, J. Y., High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer. Applied physics letters, 2007. 90(22): p. 223505-223505-3.
24. Ren, X., Li, J., Holmes, R. J., Djurovich, P. I., Forrest, S. R., and Thompson, M. E., Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices. Chemistry of materials, 2004. 16(23): p. 4743-4747.
25. Chin, B. D. and Lee, C., Confinement of charge carriers and excitons in electrophosphorescent devices: Mechanism of light emission and degradation. Advanced Materials, 2007. 19(16): p. 2061-2066.
26. Bartolo, P. and Mitchell, G., Stereo-thermal-lithography: a new principle for rapid prototyping. Rapid Prototyping Journal, 2003. 9(3): p. 150-156.
27. Huang, J., Blochwitz-Nimoth, J., Pfeiffer, M., and Leo, K., Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure. Journal of applied physics, 2002. 93(2): p. 838-844.
28. Wohlgenannt, M., Tandon, K., Mazumdar, S., Ramasesha, S., and Vardeny, Z., Formation cross-sections of singlet and triplet excitons in π-conjugated polymers. Nature, 2001. 409(6819): p. 494-497.
29. Müllen, K. and Scherf, U., Organic light emitting devices. 2006: Wiley Online Library.
30. Yersin, H., Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties, in Transition Metal and Rare Earth Compounds. 2004, Springer. p. 1-26.
31. Evans, R. C., Douglas, P., and Winscom, C. J., Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coordination Chemistry Reviews, 2006. 250(15): p. 2093-2126.
32. Tsuboi, T. and Aljaroudi, N., Electronic Relaxation Processes in the T1 State of Phosphorescent fac-Tris (2-phenylpyridine) Iridium Molecule in 4, 4'-N, N'-Dicarbazole-biphenyl Host. Japanese Journal of Applied Physics, 2008. 47(2S): p. 1266.
33. Wang, Y., Herron, N., Grushin, V., LeCloux, D., and Petrov, V., Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds. Applied Physics Letters, 2001. 79(4): p. 449-451.
34. 張志祥 and 洪乙文, 從 2009 FINETECH JAPAN, LIGHTING JAPAN 看 FPD 與次世代照明發展趨勢 2009/6/5. (269): p. 165-172.
35. Chen, H., Gang, Y., Wenbin, C., Kaijun, L., and Feng, L., Simulation of the organic thin film thickness distribution for multi-source thermal evaporation process. Vacuum, 2010. 85(3): p. 448-451.
36. Kido, J., Shionoya, H., and Nagai, K., Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole). Applied physics letters, 1995. 67(16): p. 2281-2283.
37. Kawamura, Y., Yanagida, S., and Forrest, S. R., Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. Journal of Applied Physics, 2002. 92(1): p. 87-93.
38. Anthopoulos, T. D., Markham, J. P., Namdas, E. B., Samuel, I. D., Lo, S.-C., and Burn, P. L., Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Applied physics letters, 2003. 82(26): p. 4824-4826.
39. Gong, X., Ma, W., Ostrowski, J. C., Bazan, G. C., Moses, D., and Heeger, A. J., White electrophosphorescence from semiconducting polymer blends. Advanced Materials, 2004. 16(7): p. 615-619.
40. Markham, J., Lo, S.-C., Magennis, S., Burn, P., and Samuel, I., High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes. Applied physics letters, 2002. 80(15): p. 2645-2647.
41. Hebner, T., Wu, C., Marcy, D., Lu, M., and Sturm, J., Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters, 1998. 72(5): p. 519-521.
42. Wang, D., Wu, Z., Zhang, X., Wang, D., and Hou, X., Solution-processed white organic light-emitting devices based on small-molecule materials. Journal of Luminescence, 2010. 130(2): p. 321-325.
43. Kim, K. H., Lee, J. Y., Park, T. J., Jeon, W. S., Kennedy, G., and Kwon, J. H., Small molecule host system for solution-processed red phosphorescent OLEDs. Synthetic Metals, 2010. 160(7): p. 631-635.
44. He, L., Liu, J., Wu, Z., Wang, D., Liang, S., Zhang, X., Jiao, B., Wang, D., and Hou, X., Solution-processed small molecule thin films and their light-emitting devices. Thin Solid Films, 2010. 518(14): p. 3886-3890.
45. Yoshioka, Y. and Jabbour, G. E., Desktop inkjet printer as a tool to print conducting polymers. Synthetic Metals, 2006. 156(11): p. 779-783.
46. Mannerbro, R., Ranlöf, M., Robinson, N., and Forchheimer, R., Inkjet printed electrochemical organic electronics. Synthetic metals, 2008. 158(13): p. 556-560.
47. Xing, R., Ye, T., Ding, Y., Ma, D., and Han, Y., Formation of low surface energy separators with undercut structures via a full-solution process and its application in inkjet printed matrix of polymer light-emitting diodes. Organic Electronics, 2009. 10(2): p. 313-319.
48. Ding, Z., Xing, R., Fu, Q., Ma, D., and Han, Y., Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011. 12(4): p. 703-709.
49. You, J.-D., Tseng, S.-R., Meng, H.-F., Yen, F.-W., Lin, I., and Horng, S.-F., All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Organic Electronics, 2009. 10(8): p. 1610-1614.
50. 李孟庭, 2010 2nd LED/OLED Lighting次世代照明技術研討會. 材料世界網, 2010.
51. Pode, R., Lee, S.-J., Jin, S.-H., Kim, S., and Kwon, J. H., Solution processed efficient orange phosphorescent organic light-emitting device with small molecule host. Journal of Physics D: Applied Physics, 2010. 43(2): p. 025101.
52. Kim, S.-O., Zhao, Q., Thangaraju, K., Kim, J. J., Kim, Y.-H., and Kwon, S.-K., Synthesis and characterization of solution-processable highly branched iridium (III) complex cored dendrimer based on tetraphenylsilane dendron for host-free green phosphorescent organic light emitting diodes. Dyes and Pigments, 2011. 90(2): p. 139-145.
53. Park, B., Jeon, H. G., Huh, Y. H., Lee, Y. I., Han, W. T., Kim, I. T., and Park, J., Solution-processable double-layered ionic< i> pin organic light-emitting diodes. Current Applied Physics, 2011. 11(3): p. 673-676.
54. Lilien, O. M., History of industrial gravure printing up to 1920. 1972: Lund Humphries.
55. Puetz, J. and Aegerter, M. A., Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils. Thin Solid Films, 2008. 516(14): p. 4495-4501.
56. Kopola, P., Tuomikoski, M., Suhonen, R., and Maaninen, A., Gravure printed organic light emitting diodes for lighting applications. Thin Solid Films, 2009. 517(19): p. 5757-5762.
57. Kopola, P., Aernouts, T., Guillerez, S., Jin, H., Tuomikoski, M., Maaninen, A., and Hast, J., High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Solar Energy Materials and Solar Cells, 2010. 94(10): p. 1673-1680.
58. Voigt, M. M., Mackenzie, R. C., Yau, C. P., Atienzar, P., Dane, J., Keivanidis, P. E., Bradley, D. D., and Nelson, J., Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates. Solar Energy Materials and Solar Cells, 2011. 95(2): p. 731-734.
59. Choi, M.-C., Kim, Y., and Ha, C.-S., Polymers for flexible displays: from material selection to device applications. Progress in Polymer Science, 2008. 33(6): p. 581-630.
60. Lee, J.-W., Mun, K. K., and Yoo, Y. T., A comparative study on roll-to-roll gravure printing on PET and BOPP webs with aqueous ink. Progress in Organic Coatings, 2009. 64(1): p. 98-108.
61. Gong, X., Wang, S., Moses, D., Bazan, G. C., and Heeger, A. J., Multilayer Polymer Light‐Emitting Diodes: White‐Light Emission with High Efficiency. Advanced Materials, 2005. 17(17): p. 2053-2058.
62. Huang, J.-H., Ho, Z.-Y., Kuo, T.-H., Kekuda, D., Chu, C.-W., and Ho, K.-C., Fabrication of multilayer organic solar cells through a stamping technique. J. Mater. Chem., 2009. 19(24): p. 4077-4080.
63. Ramsdale, C., Barker, J., Arias, A., MacKenzie, J., Friend, R., and Greenham, N., The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. Journal of applied physics, 2002. 92(8): p. 4266-4270.
64. Tseng, S.-R., Meng, H.-F., Yeh, C.-H., Lai, H.-C., Horng, S.-F., Liao, H.-H., Hsu, C.-S., and Lin, L.-C., High-efficiency blue multilayer polymer light-emitting diode fabricated by a general liquid buffer method. Synthetic Metals, 2008. 158(3): p. 130-134.
65. Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004. 428(6986): p. 911-918.
66. Goswami, D. Y. and Kreith, F., Handbook of energy efficiency and renewable energy. 2007: Crc Press.
67. Kido, J., Hongawa, K., Okuyama, K., and Nagai, K., White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817.
68. Service, R. F., Electronics. Organic LEDs look forward to a bright, white future. Science (New York, NY), 2005. 310(5755): p. 1762.
69. Beguin, A. E., Method of coating strip material. 1954, Google Patents.
70. Levich, B. and Landau, L., Dragging of liquid by a plate. Acta Physiochim, 1942. 17: p. 42-54.
71. Ruschak, K. J., Limiting flow in a pre-metered coating device. Chemical Engineering Science, 1976. 31(11): p. 1057-1060.
72. Higgins, B. and Scriven, L., Capillary pressure and viscous pressure drop set bounds on coating bead operability, in Chemical Engineering Science. 1980. p. 673-682.
73. Lee, K.-Y., Liu, L.-D., and Ta-Jo, L., Minimum wet thickness in extrusion slot coating. Chemical Engineering Science, 1992. 47(7): p. 1703-1713.
74. Carvalho, M. S. and Kheshgi, H. S., Low‐flow limit in slot coating: Theory and experiments. AIChE journal, 2000. 46(10): p. 1907-1917.
75. 楊之光, 先進狹縫式塗佈研究, in Department of Chemical Engineering. 2000, National Tsing Hua University: Hsinchu.
76. Chang, Y.-R., Chang, H.-M., Lin, C.-F., Liu, T.-J., and Wu, P.-Y., Three minimum wet thickness regions of slot die coating. Journal of colloid and interface science, 2007. 308(1): p. 222-230.
77. Chang, H. M., Chang, Y. R., Lin, C. F., and Liu, T. J., Comparison of vertical and horizontal slot die coatings. Polymer Engineering & Science, 2007. 47(11): p. 1927-1936.
78. Bornside, D., Macosko, C., and Scriven, L., Spin coating: One‐dimensional model. Journal of Applied Physics, 1989. 66(11): p. 5185-5193.
79. Hall, D. B., Underhill, P., and Torkelson, J. M., Spin coating of thin and ultrathin polymer films. Polymer Engineering and Science, 1998. 38(12): p. 2039-2045.
80. Chang, C.-C., Pai, C.-L., Chen, W.-C., and Jenekhe, S. A., Spin coating of conjugated polymers for electronic and optoelectronic applications. Thin solid films, 2005. 479(1): p. 254-260.
81. 葉修鋒, 以狹縫式塗佈技術製備大面積小分子有機發光二極體, in Department of Chemical Engineering. 2013, National Tsing Hua University: Hsinchu. p. 1-125.
82. Mao, G., Wu, Z., He, Q., Jiao, B., Xu, G., Hou, X., Chen, Z., and Gong, Q., Considerable improvement in the stability of solution processed small molecule OLED by annealing. Applied Surface Science, 2011. 257(17): p. 7394-7398.
83. Yoon, Y., Lee, H., Kim, T., Kim, K., Choi, S., Yoo, H. K., Friedman, B., and Lee, K., Post-annealing effect on the interface morphology and current efficiency of organic light-emitting diodes. Solid-State Electronics, 2013. 79: p. 45-49.
84. Choi, S., Potscavage Jr, W. J., and Kippelen, B., Area-scaling of organic solar cells. Journal of Applied Physics, 2009. 106(5): p. 054507.
85. Park, S.-Y., Jeong, W.-I., Kim, D.-G., Kim, J.-K., Lim, D. C., Kim, J. H., Kim, J.-J., and Kang, J.-W., Large-area organic solar cells with metal subelectrode on indium tin oxide anode. Applied Physics Letters, 2010. 96(17): p. 173301.
86. Park, J., Shin, D., and Park, S., Large-area OLED lightings and their applications. Semiconductor Science and Technology, 2011. 26(3): p. 034002.
87. Park, J., Lee, J., Shin, D., and Park, S., Luminance uniformity of large-area OLEDs with an auxiliary metal electrode. Display Technology, Journal of, 2009. 5(8): p. 306-311.
88. 鍾長廷, 多光色溶液製程有機發光二極體之研製, in Department of Chemical Engineering. 2015, National Tsing Hua University: Hsinchu. p. 1-145.
89. Chang, Y.-F., Chiu, Y.-C., Yeh, H.-C., Chang, H.-W., Chen, C.-Y., Meng, H.-F., Lin, H.-W., Huang, H.-L., Chao, T.-C., and Tseng, M.-R., Unmodified small-molecule organic light-emitting diodes by blade coating. Organic Electronics, 2012. 13(10): p. 2149-2155.
90. Carley, J. F., Flow of Melts in``Crosshead''‐Slit Dies; Criteria for Die Design. Journal of applied physics, 1954. 25(9): p. 1118-1123.
91. 洪欽男, 擠壓型模具之設計與研究, in Department of Chemical Engineering. 1987, National Tsing Hua University: Hsinchu.

92. Pearson, J., On convection cells induced by surface tension. Journal of fluid mechanics, 1958. 4(05): p. 489-500.
93. Patton, T. C., Paint flow and pigment dispersion, in Paint Flow and Pigment Dispersion. 1964, Interscience. p. 479.
94. 陳鴻志, 以精密塗佈技術製備光電元件之探討與分析, in Department of Chemical Engineering. 2014, National Tsing Hua University: Hsinchu.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *