帳號:guest(3.145.130.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐韻涵
作者(外文):Yun-Han Hsu
論文名稱(中文):Study on allotopic expression of recoded human mitochondrial ND4L genes in mammalian cells
論文名稱(外文):利用同素異位的方式探討經改造後人類粒線體ND4L基因在哺乳動物細胞中之表現
指導教授(中文):高茂傑
指導教授(外文):Mou-Chieh Kao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:944227
出版年(民國):97
畢業學年度:96
語文別:英文
論文頁數:55
中文關鍵詞:粒線體ND4L基因雷伯氏遺傳性視神經萎縮症同素異位法粒線體標的序列
外文關鍵詞:mitochondriaND4L geneLeber Hereditary Optic Neuropathyallotopic expressionmitochondrial targeting sequence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:131
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
人類第一蛋白質複合體是目前所知最複雜精細的膜酵素。很多粒線體疾病的發生已被證實和此酵素複合體,特別是其組成中由粒線體基因所產生的次單體之機能性障礙有關,例如:ND4L會導致雷伯氏遺傳性視神經萎縮症(Leber Hereditary Optic Neuropathy, LHON)。然而不幸地,對於因為粒線體基因缺陷所誘發的疾病至今並沒有專一且有效率的治療方式。同素異位法(Allotopic expression)是一種最近被研發出來改善粒線體基因缺失的方法,並且已被認為在相關疾病治療上擁有克服這個具挑戰性任務的潛力。在這個方法裡,所選擇的標的粒線體基因將被重新設計並且表現在細胞質中,接著合成的基因產物藉由加入的粒線體標的序列(MTSs)而被運送回粒線體。在本篇的研究中,我們測試了應用這個方式於人類第一蛋白質複合體ND4L次單體蛋白質的可能性。我們成功地設計並合成了兩段轉殖基因COX8MTSND4L和 COX4MTSND4L,而且利用它們在一個可被四環黴素誘導系統裡藉由短暫性轉染同素異位地表現了ND4L。我們實驗證明可以藉由四環黴素的加入來誘導經改造的ND4L轉殖基因表現蛋白質,而且此可誘導的系統亦可以應用於由細胞核基因所產生人類第一蛋白質複合體的NDUFV2 (24k)。然而,我們所選擇兩種粒線體標的序列COX4MTS和COX8MTS卻無法攜帶ND4L到粒線體的正確位置。ND4L具高度疏水性的特質可能是阻礙此蛋白質粒線體運送的主因。我們認為使用其他的粒線體標的序列;在目標轉殖基因中加入3’未轉譯區域 (3'UTR);尋找可以用來穩定產生粒線體蛋白質的mRNA之蛋白質,或者結合此三種方法之間之組合,也許可以改進ND4L同素異位表現之應用性。

Human complex I is the most intricate membrane-bound enzyme known to date, and the dysfunction of this enzyme complex, especially the mitochondrially encoded subunits such as ND4L, has linked to a wide variety of mitochondrial diseases, including Leber Hereditary Optic Neuropathy (LHON). Unfortunately, there is no specific and efficient therapy for treatment of diseases resulting from defects in the mitochondrial genome. Allotopic expression is a newly developed approach which has been considered to have the potential in conquering this challenging task. In this method, a mitochondrial gene is reengineered and expressed in the cytoplasm, and the resultant gene product is then imported back to mitochondria by the addition of mitochondrial targeting sequences (MTSs). In this study, we tested the possibility of applying this approach for human complex I ND4L subunit. We successfully designed and synthesized two transgenes, COX8MTSND4L and COX4MTSND4L, and used them in a tetracycline–inducible system for allotopic expression of ND4L by transient transfection. We demonstrated that the recoded ND4L transgene could be expressed by the addition of tetracycline, and this inducible system was also applicable to a nuclear-encoded mitochondrial gene for NDUFV2 (24k) subunit of human complex I. However, the two mitochondrial targeting sequences, COX8MTS and COX4MTS, we chose were unable to carry our targeted ND4L to the correct location in the mitochondria. The highly hydrophobic property of the ND4L may impede its mitochondrial import. We suggest that using other different MTSs, adopting 3’ untranslated region (3’ UTR) in the targeted transgene, looking for proteins which can stabilize the mRNAs encoding mitochondrial proteins or any combination of these three methods may improve the applicability of allotopic expression of ND4L.
摘要 1
Abstract 3
Table of contents 5
Introduction 6
Materials and Methods 16
Cell culture 16
Construction of vectors 16
1. For nuclear-encoded NDUFV2 subunit 16
2. For mitochondrial-encoded ND4L subunit 17
Transient transfection 20
Immunofluorescence staining 21
Results 24
Construction of recoded ND4L genes for allotopic expression 24
Analysis of immunohistochemistry in T-REx 293 cells 26
Discussion 29
Reference 33
Tables 36
Table 1: The wavelengths applied at the excitation spectrum and the emission spectrum for different fluorescent dyes. 36
Figures 37
Figure 1: The mitochondrial oxidative phosphorylation (OXPHOS) system in the lipid bi-layer of the inner mitochondrial membrane. 37
Figure 2: Schematic representation of the strategy for constructing the MTS-ND4L fusion genes and expressing the gene of interest in an inducible tetracycline-regulated expression system (T-REx system) 38
Figure 3: The thermodynamically balanced inside-out (TBIO) method of PCR-based gene synthesis of COX8MTS ND4L transgene. 40
Figure 4: The result of the first assembly PCR generated by TBIO method of PCR-based gene synthesis 41
Figure 5: The results of the second assembly PCR generated by PCR-based gene synthesis and 24k gene from MGC-15943 clone amplified by PCR. 42
Figure 6: Cloning transgenic gene into the pCRScript vector and replacing the mitochondrial targeting sequence (MTS) 43
Figure 7: Switching the targeted genes from the pCRScript vector to the tetracycline-regulated expression system plasmid pcDNA4TM/TO/myc-His A vector 44
Figure 8: Determining the optimal concentration of tetracycline for induction of protein expression under the tetracycline-regulated system 46
Figure 9: Subcellular localization of MTS-ND4L in T-REx 293 cells 48
Figure 10: Immunocytochemistry of MTS-ND4L in T-REx 293 cells using ATP synthase subunit α as the marker for mitochondria 50
Figure 11: Studies on the subcellular localization the allotopic-expressed ND4L and its association with cytoskeleton in the cytosol 51
Figure 12: Comparison of the original sequences with the recoded transgenes 53
Figure 13: The hydrophobicity profiles of MTS-ND4L and 24k 55
Abu-Amero, K. K. and T. M. Bosley (2006). "Mitochondrial abnormalities in patients with LHON-like optic neuropathies." Invest. Ophthalmol. Vis. Sci. 47(10): 4211-4220.

Bonnefoy, N. and T. Fox (2002). "Genetic transformation of Saccharomyces cerevisiae mitochondria." Methods in enzymology 350: 97-111.

Bonnet, C., V. Kaltimbacher, et al. (2007). "Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting Complex I or V subunits." Rejuvenation Research 10(2): 127-144.

Chan, D. C. (2006). "Mitochondria: dynamic organelles in disease, aging, and development." Cell 125: 1241-1252.

Chatterjee, A., E. Mambo, et al. (2006). "Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress." BMC Cancer 6(1): 235.

Chen, L. (1989). "Fluorescent labeling of mitochondria." Methods in cell biology 29: 103-123.

Corral-Debrinski, M., N. Belgareh, et al. (1999). "Overexpression of yeast karyopherin Pse1p/Kap121p stimulates the mitochondrial import of hydrophobic proteins in vivo." Molecular Microbiology 31(5): 1499-1511.

DiMauro, S. and E. A. Schon (2003). "Mitochondrial respiratory-chain diseases." N Engl J Med 348(26): 2656-2668.

Gratzer, S., T. Beilharz, et al. (2000). "The mitochondrial protein targeting suppressor (mts1) mutation maps to the mRNA-binding domain of Npl3p and affects translation on cytoplasmic polysomes." Molecular Microbiology 35(6): 1277-1285.

Grey, A. D. N. J. d. (2000). "Mitochondrial gene therapy: an arena for the biomedical use of inteins." Trends in Biotechnology 18(9): 394-399.

Henze, K. and W. Martin (2003). "Evolutionary biology: Essence of mitochondria." Nature 426: 127-128.

Hirst, J., J. Carroll, et al. (2003). "The nuclear encoded subunits of complex I from bovine heart mitochondria " Biochimica et Biophysica Acta (BBA) - Bioenergetics 1604: 135-150

Jan Smeithink, L. v. d. Heuvel, et al. (2001). "The genetics and pathology of oxidative phosphorylation." Nature Reviews Genetics 2: 342-352.

John Guy, X. Q. F. P. E. A. S. G. M. V. C. A. M. W. W. H. A. S. L. (2002). "Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy." Annals of Neurology 52(5): 534-542.

Kaltimbacher, V., C. Bonnet, et al. (2006). "mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein." RNA 12(7): 1408-1417.

Kao, M.-C., E. Nakamaru-Ogiso, et al. (2005). "Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli." Biochemistry 44: 9545 -9554.

Kao, M. C., S. Di Bernardo, et al. (2002). "Characterization of the membrane domain Nqo11 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans." Biochemistry 41(13): 4377-4384.

Manfredi, G., J. Fu, et al. (2002). "Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus." Nat Genet 30(4): 394-399.

Margeot, A., C. Blugeon, et al. (2002). "In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function." The EMBO journal 21: 6893–6904.

McBride, H. M., M. Neuspiel, et al. (2006). "Mitochondria: More than just a powerhouse " Current Biology 16: R551 - R560.

Oca-Cossio, J., L. Kenyon, et al. (2003). "Limitations of allotopic expression of mitochondrial genes in mammalian cells." Genetics 165(2): 707-720.

Shoffner, J. M., M. T. Lott, et al. (1990). "Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation." Cell 61: 931-937.

Smith, P. M., G. F. Ross, et al. (2004). "Strategies for treating disorders of the mitochondrial genome " Biochimica et Biophysica Acta 1659: 232-239.

Taylor, R. W. and D. M. Turnbull (2005). "Mitochondrial DNA mutations in human disease." Nature Reviews Genetics 6: 389-402.

Tsukihara, T., K. Shimokata, et al. (2003). "The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process." Proceedings of the National Academy of Sciences 100(26): 15304-15309.

Wallace, D. C. (2005). "The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement " Gene 354(18): 169-180.

Wallace, D. C. (2007). "Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine." Annual Review of Biochemistry 76(1): 781-821.

Woese, C. R. (1977). "Endosymbionts and mitochondrial origins." Journal of Molecular Evolution 10(2): 93-96.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Studies on the import into mitochondria of the human ND4L subunit by reengineered nuclear genes
2. 探討人類粒線體第一蛋白質複合體ND3次單元之同素異位基因表現
3. 利用異位及異種表現的方式探討衣藻細胞核版粒線體呼吸鏈相關基因在人類細胞中之表現
4. 由c-Src調控的人類粒線體第一蛋白複合體NDUFS7磷酸化之研究及其對細胞內的分佈、SUMOylation修飾和不同壓力反應的關聯性
5. 胃幽門螺旋桿菌26695菌株之D型阿拉伯糖-5-磷酸異構酶由HP1429基因所表現之特性研究
6. 人類粒線體第一蛋白質複合體中NDUFS7次單元擁有粒線體與細胞核兩種不同的分佈
7. 研究粒線體酵素複合體I中NDUFV2次單元的功能及其粒線體標的訊號
8. 胃幽門螺旋桿菌26695菌株之ADP-L-glycero-D-manno-heptose-6-epimerase由HP0859基因所表現之特性研究
9. Characterization and identification of Helicobacter pylori 26695 phosphopantetheine adenylyltransferase encoded by hp1475
10. 粒線體NDUFS8次單元功能分析及其粒線體標的訊號之研究
11. The functional study of NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) subunit and its iron-sulfur cluster in human mitochondrial complex I under oxidative stress
12. 胃幽門螺旋桿菌26695菌株之phosphoheptose isomerase由 hp0857基因所表現之特性研究
13. 胃幽門桿菌HP0860基因缺失對脂多醣生合成的影響
14. 人類粒線體酵素複合體I的NDUFS8次單元蛋白質及其鐵硫中心之功能研究
15. 人類粒線體第一蛋白質複合體中NDUFS7次單元的功能研究
 
* *