帳號:guest(18.118.200.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):薛婉君
作者(外文):Wan-Jyun Syue
論文名稱(中文):0.35um製程之橫向金氧半場效電晶體特性分析
論文名稱(外文):The Characteristic Analyses of 0.35um Process LDMOSFETs
指導教授(中文):龔正
指導教授(外文):Jeng Gong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:935035
出版年(民國):96
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:串聯電阻汲極導致能障下降橫向式金氧半場效電晶體
外文關鍵詞:on-resistanceDIBLLDMOSFETs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:879
  • 評分評分:*****
  • 下載下載:102
  • 收藏收藏:0
此篇論文是以0.35um製程之橫向金氧半場效電晶體為主體,分成量測與模擬兩個部分的特性來探討分析,ㄧ是使用HP4156及Keithley 236量測元件的Id-Vd、Id-Vg曲線來分析導通電阻的組成及DIBL特性參數的萃取,另ㄧ方面是以台積電目前已生產0.35um製程的高壓元件,使用Tsuprem4及Medici模擬軟體進行部份結構調整,期許能達到更佳的效果。
In this thesis, the investigation subject is lateral diffusion metal-oxide-silicon field effect transistor fabricated with 0.35um process technologies. It is divided into two sections, namely measurement and simulation. The former part is fulfilled by measuring the Id-Vd and Id-Vg curves with HP4156 and Keithley 236 systems in order to analyze the components’ electrical properties such as on-resistance and breakdown voltage as well as to extract characteristic parameter of DIBL. On the other hand, TCAD tools like Tsuprem4[1] and Medici [2]are used to modulate some portion of the device structure with a well-built 0.35um high voltage process technology to optimize the device performance. Satisfactory results are obtained.
摘要--------------------------------------------------------------------------------Ⅰ
致謝--------------------------------------------------------------------------------Ⅲ
目錄--------------------------------------------------------------------------------Ⅳ
第一章:簡介-----------------------------------------------------------------------1
第二章:元件發展與理論回顧
2.1 LDMOSFET的結構----------------------------------------------------3
2.2 LDMOSFET的工作原理----------------------------------------------4
2.2.1崩潰機制----------------------------------------------------------4
2.2.2 導通電阻---------------------------------------------------------4
2.2.3 臨限電壓---------------------------------------------------------8
2.2.4 場板應用--------------------------------------------------------10
第三章:元件結構介紹及量測分析
3.1 元件結構---------------------------------------------------------------19
3.2 量測分析(一):電阻萃取-------------------------------------------20
3.2.1 理論說明--------------------------------------------------------20
3.2.2 萃取結果--------------------------------------------------------21
3.3 量測分析(二):DIBL特性參數萃取-------------------------------25
3.3.1 DIBL效應的定義----------------------------------------------25
3.3.2 DIBL參數萃取方法-------------------------------------------30

3.3.3 DIBL分析------------------------------------------------------------31
3.3.4析法比較--------------------------------------------------------------34
第四章:元件模擬分析
4.1 電性參數定義---------------------------------------------------------49
4.1.1 崩潰電壓--------------------------------------------------------49
4.1.2 導通電阻--------------------------------------------------------49
4.1.3 量測和模擬結果之標準化-----------------------------------50
4.2 模擬分析--------------------------------------------------------------50
4.2.1 電極長度變化--------------------------------------------------51
4.2.2 源汲極深度奈米化--------------------------------------------51
4.2.3 結構變化--------------------------------------------------------52
第五章:結論---------------------------------------------------------------------71
參考文獻--------------------------------------------------------------------------73
[1] AVANT! TSUPREM-4, Two-Dimensional Process Simulation Program,Version-2000.4.0
[2] AVANT! MEDICI, Two-Dimensional Device Simulation Program, Version-2000.4.0
[3] Ayhan A. Mutlu, Mahmud Rahman, “Two-Dimensional Analytical Model for Drain Induced Barrier Lowering (DIBL) in Short Channel MOSFETs,” in Proc. IEEE Southeastcon, pp. 340-344, 2000.
[4] J. D. Kendall, A. R. Boothroyd, “A two-Dimensional Analytical Threshold Voltage Model for MOSFETs with Arbitrarily Doped Substrates,” IEEE Trans. Electron Devices, vol.EDL-7, no.7, July 1986.
[5] R. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering,” IEEE Trans. Electron Devices, vol. ED-26, P.461, 1979.
[6] C.L. Zhu, Rusli, J. Almira, C.C. Tin, S.F. Yoon and J. Ahn, “Physical Simulation of Drain-Induced Barrier Lowering Effect IN SiC MESFETs,” Materials Science Forum, vol.483, p849-852, 2005.
[7] Michael J. Van der Tol and Savvas G. Chamberlain, “Drain-Induced Barrier Lowering in Buried-Channel MOSFETs,” IEEE Trans. Electron Devices, vol.40, no.4, p741-749, April 1993
[8] Jiunn-Yann Tsai, Jie Sun, Kam F. Yee and Carlton M. Osburn, “DIBL Considerations of Extended Drain Strcture for 0.1um MOSFETs,” IEEE Trans. Electron Devices, vol.17, no7, p331-333, July 1996.
[9] M. Jamal Deen, Z. X. Yan, “DIBL in Short-Channel NMOS Devices at 77K,” IEEE Trans. Electron Devices, vol.39, no.4, April 1992.
[10] M. Jamal Deen, Z. X. Yan, “Substrate Bias Effects on Drain-Induced Barrier Lowering in Short-Channel PMOS Devices,” IEEE Trans. Electron Devices, vol.37, no.7, July 1990.
[11] Qingyan Liu, Takayasu Sakurai and Toshiro Hiramoto, “Optimum Device Consideration for Standby Power Reduction Scheme Using Drain-Induced Barrier Lowering,” Jpn. J. Appl. Phys., vol.42, pp. 2171-2175, Part 1, no.4B, April 2002.
[12] Ching-Sung Lee, Wei-Chou Hsu, Chang-Luen Wu, “Analytic Modeling for Drain-Induced Barrier Lowering Phenomenon of the InGaP/InGaAs/GaAs Pseudomorphic Doped-Channel Field-Effect Transistor,” Jpn. J. Appl. Phys., vol.41, pp. 5919-5923, Part 1, no. 10, October 2002.
[13] Sangsu Park, Hyunsik Im, Ilgweon Kim and Toshiro Hiramoto, “Impact of Drain Induced Barrier Lowering on Read Scheme in Silicon Nanocrystal Memory with Two-Bit-Cell Operation,” The Japan Society of Applied Physics, vol.45, no.2A, pp638-642, 2006.
[14] C.L. Zhu, Rusli, C.C. Tin, S.F. Yoon and J. Ahn, ” Drain-Induced Barrier Lowering Effect and Its Dependence on Channel Doping in SiC MESFETs”, Proc. 7th IEEE Int. Conf. Solid-State and Integrated-Circuit Technology (ICSICT), Beijing, China, vol. 3 (2004) 2309-2312.
[15]Michael S. Adler, King W. Owyang, and B. Jayant Baliga, ”The Evolution of Power Devices Technology,” IEEE Trans. Electron Devices, vol.ED-31, pp.1570-1591.no.1984.
[16] S. Hidalgo, J. Fernandez, P. Godignon, J. Rebollo, and J. Millan, ” Power Lateral Dmos Transistor Test Sturctures,” ICMTS, vol.6, pp33-38, March, 1993.
[17] Robert F. Pirret, ” Semiconductor Devices Fundamentals,” copyright 1996 by Addison-Wesley Publishing Company, Inc.
[18] S. Colak, B. Singer, E. Stupp, ” Lateral Dmos Power Transistor Design,” IEEE Electron Device Letters, vol.EDL-1, pp.51-53, 1980.
[19] R. Jayaraman, V. Rumennik, B. Singer, E. H. Stupp, “Comparison of high voltage devices for power integrated circuits ”, IEDM, vol. 30,pp. 258-261, 1984.
[20] Dieter K. Schroder, ”Semiconductor Material and Device Characterization,” John Wiley & Sons, 223-237, 1998.
[21] Morikazu Tsuno, Masato Suga, Masayasu Tanaka, Kentaro Shibahara, “Physically-Based Threshold Voltage Determination for MOSFETs of All Gate Lengths,” IEEE Trans. Electron Devices, vol.46, no.7, p1429-1433, July 1999.
[22]Adriaan W. Ludikhuize, “Performance and Innovative Trends in RESURF ”, ESSDERC 2001 , pp. 35-44, Sep. 2001.
[23]J. A. Appeals, and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices)”, IEDM Tech. Dig., pp. 238-239, 1979.
[24] B.J. Baliga, “Power Semiconductor Devices”, PWS. Publishing company, 1995.
[25] T. A. Fjeldly, M. Shur, “Threshold Voltage Modeling and the Subthreshold Regime of Operation of Short-Channel MOSFETs”, IEEE Transactions on Electron Devices, vol. 40, no.1, p.137, January 1993.
[26] W. Fikry, G. Ghibaudo and M.Dutoit, “Temperature Dependence of Drain-induced Barrier Lowering in deep submicrometre MOSFETs,” Electronics Letters, vol. 30, no.11,pp. 911-912, 1994.
[27] Nian Yang, W. Kirklen Henson, and Jimmie J. Wortman, “A Comparative Study of Gate Direct Tunneling and Drain Leakage Currents N-MOSFETs with Sub-2-nm Gate Oxides,” IEEE Trans. Electron Devices, vol.47, no.8, Auguest 2000.
[28] Zhigang Wang, Chris G. Parker, Dexter W. Hodge, Robert T. Croswell, Nian Yang, Veena Misra, John R. Hauser, “Effect of Polysilicon Gate Type on the Flatband Voltage Shift for Ultrathin Oxide-Nitride Gate Stacks,” IEEE Trans. Electron Devices, vol.21, no.4, April 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *