帳號:guest(3.144.25.74)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱立文
作者(外文):Li-Wen Chu
論文名稱(中文):化學法製備奈米級Ba-Ti-O介電粉體及其分散應用性之探討
論文名稱(外文):Preparation and Dispersion of Ultra-Fine Ba-Ti-O Dielectric Powders by Chemical Methods
指導教授(中文):薛敬和
指導教授(外文):Ging-Ho Hsiue
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:897616
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:249
中文關鍵詞:化學液相合成法奈米粉體Ba2Ti9O20BaTiO3磷酸酯積層陶瓷元件
相關次數:
  • 推薦推薦:0
  • 點閱點閱:477
  • 評分評分:*****
  • 下載下載:32
  • 收藏收藏:0
本文將針對奈米級鈦酸鋇系介電陶瓷粉體前驅物的化學合成,與奈米級粉體分散應用性上進行研究探討。研究內容包含兩大方向,在奈米粉體之材料製作上,利用液相化學法合成具微波介電特性之Ba2Ti9O20相材料前驅物粉體,與其材料燒結體的特性探討;此外,在奈米粉體分散與應用性之研究方面,則探討鈦酸鋇(BaTiO3)奈米級粉體於有機溶劑系中之漿料分散性質,並進一步應用於積層陶瓷元件製作。
在Ba2Ti9O20微波介電材料粉體製作與其特性研究中,採用三種化學合成方法得到Ba2Ti9O20微波介電材料粉體,分別為改良式共沉澱法、逆微乳膠法以及水熱法。在改良式共沉澱法(Modified co-precipitation,MCP)方面,運用酸鹼度值控制與超音波霧化設備,進行自動化的共沉澱反應。經由此一反應所得之改良式共沉法前驅物粉體,可有效改善粉體凝團及降低粉體平均粒徑(48.8 nm)。在不同的氧分壓氣氛環境下(O2, air, N2 and N2/H2)進行粉體熱處理,所得到材料相變化過程與結果,亦有所不同。在富氧氣之燒結環境下製作的Ba2Ti9O20,在燒結體特性上明顯優於其他氣氛環境製作。於純氧環境下,可於相對低燒結溫度下(1200℃/4 h),得到相當優越的微波介電特性(K=38.7 and Q×f=30,502)。
逆微乳膠法(Inverse-microemulsion,IME)合成Ba2Ti9O20微波介電材料方面,藉由界面活性劑於溶劑中所形成之乳膠微胞做為反應單元,進行微小化合成製作。採用PE(petroleum ether)/ NP-5(poly (oxyethylene)5 nonyl phenol ether) /Water之三相比例為1.5:1:0.1,進行雙逆微乳膠反應,反應溶液pH值控制在9.5。反應所得之Ba2Ti9O20前驅物粉體,其粉體平均粒徑為21.5 nm,亦為三種化學合成法中所得之最細微粉體。逆微乳膠法合成粉體在氧氣環境下熱處理,可於相對低溫燒結條件下(1200℃/4 h)反應形成Ba2Ti9O20,並達到高微波介電特性。但在更高溫氧氣燒結環境下(>1250℃),Ba2Ti9O20亦容易較早產生崩解與二次相(TiO2)形成。此一結果與改良式共沉法粉體在氧氣環境下熱處理所得結果相同。
利用水熱合成法製作Ba2Ti9O20前驅物粉體中,使用不同大小奈米級的TiO2粉末(40 nm,100 nm與200 nm)與Ba(OH)2水溶液作為起始原物料,控制適當添加劑(H2O2)及強鹼性製作環境(pH>12),可使得Ba離子在水熱反應過程中於TiO2表面形成微小的BaTiO3晶體,並吸附於TiO2顆粒上,即經由短距離的溶解-析出機制(short-range dissolution-precipitation),而形成TiO2-BaTiO3之core-shell結構奈米粉體。經實驗得知,以40nm TiO2粉末與適當的水熱反應製作條件,可較早得到符合鋇/鈦離子比(Ba/Ti=2/9)的Ba2Ti9O20前驅物粉體。再經由粉末煆燒處理,可在相當低的熱處理溫度下(1100℃/4 h),生成Ba2Ti9O20相。將水熱反應製得的粉末,經由煆燒(1050℃/4 h)後壓片燒結(1300℃/4 h),可得具有優越微波介電特性的Ba2Ti9O20陶瓷材料(K=37.2, Q×f=28835)。
根據上述的研究中觀察發現,在粉末經由熱處理而形成Ba2Ti9O20之相變化過程中,當兩主要暫態相:BaTi4O9與BaTi5O11共存時,可於短時間內快速反應形成Ba2Ti9O20相。利用固態法製作,以BaTi4O9/BaTi5O11作為反應起始物配方,並施以粉體微小化所製作出的配方進行製作。結果發現利用BaTi4O9/BaTi5O11混合粉體可以大幅降低Ba2Ti9O20相形成溫度,採用BaTi4O9/BaTi5O11混合粉體配方(平均粒徑88 nm),更可將Ba2Ti9O20成相溫度大幅降低至1000℃。使其在Ba2Ti9O20材料燒結緻密度與微波特性上,可以於較低製作溫度下,即可得到相對優越的特性。
另一重要研究方向,是朝向開發奈米級粉體的應用性,即有機溶劑系奈米級鈦酸鋇粉體漿料之開發與應用。將針對奈米級BaTiO3微粉(50 nm)於有機溶劑中之的分散特性進行研究。除了對於奈米級BaTiO3粉體選擇適當的溶劑(1-methoxy-2-propanol)之外,於粉體分散性研究過程中,採用自行合成之高純度磷酸酯類界面活性劑,在其分子結構大小與粉體吸附關係對粉體漿料分散性質影響,亦同時進行探討。由界面電位分析、分散劑吸附行為與吸附量分析、漿料沉降時間與黏度量測等試驗得知,2-ethoxyethyl dihydrogen phosphate作為分散劑,添加於奈米BaTiO3 (50 nm)粉體有機溶劑漿料(1-methoxy-2-propanol)中,可得到最佳抗沉降特性。亦將200 nm的BaTiO3粉體導入分散研究比較發現,較大顆粒粉體漿料需較長鏈段的磷酸酯結構物之分散劑,藉以維持長時間的漿料分散穩定狀態。並利用此兩種高固含量粉體漿料(40 wt%),製作出超薄的陶瓷薄帶(2.6~2.8 micrometer)。同時亦導入積層陶瓷電容元件的製作與元件特性比較,發現較細微粉體漿料所製作出的元件,可在介電特性(K-value)與抗電壓特性(BD voltage)上得到較佳的表現。
The purposes of this thesis include two main researching fields. Firstly, the preparation of nano-sized Ba2Ti9O20 microwave dielectric materials via chemical synthesized processes was studied, which consisted of modified co-precipitation (MCP), inverse-microemulsion (IME) and hydrothermal process. After the precursors of Ba2Ti9O20 obtained, these precursors were processed by the thermal treatments (clacination & sintering) in different atmospheres (O2, air, N2 and N2/H2), sintered ceramics were obtained with various microwave dielectric properties and phase transformation. According to the above experimental results, the novel composition of Ba2Ti9O20 precursor was developed to decrease the temperature of Ba2Ti9O20 formation effectively.
Secondly, a valuable research was carried out on the application of nano-powders by using a well-dispersed nano-BaTiO3 nonaqueous suspension with high solid content. Different kinds of synthesized phosphate esters were used as dispersants and added respectively in the nano-BaTiO3 nonaqueous suspension to identify the optimal molecular structure and proper amount of phosphate ester. Moreover, this powder slurry of nano-BaTiO3 was used to manufacture an ultra-thin ceramic film for MLCC.
Summaries of all the topics in this thesis, are described as follows:
(1) Modified co-precipitation process (MCP), which combines the automatic pH -value control system and supersonic spraying of co-precipitants, was used to synthesize nano-sized Ba2Ti9O20 precursors (~48.8 nm). Kinetics for crystallization process is markedly enhanced when the O2 atmosphere was replaced with air in the calcinations and sintering processes. When O2-processed, high density Ba2Ti9O20 materials (>94%T.D.), possessing good microwave properties (K=38.7 and Q×F=30,502), were obtained by sintering the sample at 1200℃/4 h, which was lower than the sintering temperature when processed in air (i.e., 1250℃/4 h) and nitrogen.
(2) Double inverse-microemulsion (IME) process is also used for synthesizing nano-sized Ba2Ti9O20 powders. The crystallization of thus obtained powders and the microwave dielectric properties of the sintered materials were examined. The IME-derived powders were of nano-size (~21.5 nm) and possessed high activity. The BaTi5O11, intermediate phase had resulted when the IME-derived powders were calcined at 800℃(4 h) in air. However, high density Ba2Ti9O20 materials with pure triclinic phase (Hollandite-like) can still be obtained by sintering such a BaTi5O11 pre-dominated powders at 1250℃/4 h. The phase transformation kinetics for the IME-derived powders was markedly enhanced when the air replaced with O2 during calcination and sintering processes. Both the calcination and densification temperatures were lowered by around 50℃ compared to the processes undertaken in air. The microwave dielectric properties of sintered materials increase with the density of the samples, resulting in large dielectric constant (K=39) and high quality factor (Q×f =28,000 GHz) for the samples possessing a density higher than 95%T.D., regardless of sintering atmosphere. Over firing dissociates Ba2Ti9O20 materials and results in poor quality factor.
(3) A hydrothermal process has also been successfully utilized for the preparation of Hollandite-like Ba2Ti9O20 precursors. TEM investigation, in conjunction with chemical analyses on reacted powders, indicates that Ti4+-species were first dissolved in the solution and then reacted with Ba2+-species to form perovskite phased BaTiO3 in the hydrothermal process. Excessively large particle size for the starting TiO2 (anatase powders) results in insufficient Ti-ions in the solvent and incomplete reaction with Ba2+-species, which leads to Ba2+-deficit powder mixture. A residual TiO2 phase thus results after calcination. Only small TiO2 particles (40 nm) can result in sufficient Ti4+-species in the solution, which fully react with Ba2+-species and lead to TiO2/BaTiO3-ratio of the correct stoichiometry to form Ba2Ti9O20. TiO2/BaTiO3 powder mixtures, prepared in this way possess high activity and can be converted into pure Ba2Ti9O20 materials. After calcination and sintering processes (1300℃/ 4 h), such materials possess high sintered density (93.3% T.D) and good microwave dielectric properties (K = 36 and Q×f = 28000).
(4) Evolution of the phases during the calcination in mixed oxide processing of BaTiO3 and TiO2 mixture were investigated. Based on the observations, a reaction sequence of the constituent phases was proposed and a modified process has suggested viz. to utilize BaTi4O9 and BaTi5O11 mixture instead of BaTiO3 and TiO2 mixture as starting materials. The phase transformation kinetics is thus greatly enhanced. While the reaction of 2BaTiO3/7TiO2 mixture (type I, ~138 nm) requires 1100oC/4 h to completely transfer the mixture into Ba2Ti9O20 Hollandite-like phase, it needs only 1000 oC /4 h to fulfill the phase transformation process for the BaTi5O11/BaTi4O9 mixture (type III, ~88 nm). When directly sintering the materials prepared from these powder mixture, type III mixture leads to higher siterability and more uniform granular structure, as compared with the type I mixture. Furthermore, local microwave dielectric properties measured by evanescent microwave probe (EMP) reveals that the grains of type III Ba2Ti9O20 materials possess larger dielectric constant than that of type I, indicating that the type III powders not only of higher sinterability but also react much better in forming Hollandite-like phase.
(5) The stability of nano-sized barium titanate (BaTiO3) nonaqueous suspension with different solvents and phosphate esters has been investigated by means of zeta potential, adsorption, sedimentation and viscosity measurements. Without dispersant addition, the viscosity of the solvent is an essential dispersing factor for stabilizing the nano-sized BaTiO3 suspensions. Three typical phosphate esters were synthesized, including mono-alkyl, di-alkyl, and ethoxy type. The results of phosphate ester adsorption and suspension sedimentation corroborate that the specific amount of 2-ethoxy ethyl dihydrogen phosphate as a dispersant can provide the longest stable status for BaTiO3 (50 nm) contained (40 wt%) in 1-methoxy-2-propanol. Analyzing the influence of suspension dispersion for powder particle size, we found out that longer molecular chain of dispersant is required for larger powder (200 nm), but the additional amount of dispersant was less than the smaller one (50 nm). The nano-sized BaTiO3 non-aqueous suspension was successfully used to manufacture the ultra-thin ceramic film (2.6~2.8 micrometer) by tape casting and applied to multi-layer ceramic device.
謝誌
中文摘要……………………………………………………………i
英文摘要……………………………………………………………iv
目錄…………………………………………………………………viii
圖目錄………………………………………………………………xiii
表目錄................................................xxiv
第一章 緒論……………………………………………….………1
1.1 前言……………………………………………………………1
1.2 研究動機與目的………………………………………………3
第二章 文獻回顧………………………………………….………5
2.1.奈米材料製備與特性………………………….……………5
2.2 微波介電材料…………………………………...…………7
2.2.1 陶瓷材料之微波介電性質….……………………………7
2.2.2 微波介電陶瓷材料系統……………………………………15
2.3 Ba2Ti9O20微波介電陶瓷材料……………………….….……20
2.3.1 Ba2Ti9O20微波介電陶瓷材料結晶結構……………….…20
2.3.2 Ba2Ti9O20陶瓷材料微波介電性質………………….……24
2.3.3 混合氧化物法製作Ba2Ti9O20粉體………………………25
2.3.4 化學法合成Ba2Ti9O20粉體…………………………………31
2.3.4(1) 共沉澱法…………………………………...…………34
2.3.4(2) 微乳膠法…………………………………………………36
2.3.4(3) 水熱法………………………………………………..…49
2.4 分散原理………………………………………………...….52
2.4.1 粒子之特性………………………………………………...52
2.4.2 粒子間的作用力……………………………………………52
2.4.3 分散機構………………………………………………...…54
2.4.4 界面活性劑之HLB值…………………………………...…58
2.4.5 奈米粒子分散研究文獻…………………………………...62
2.5 鈦酸鋇粉體與應用於其分散作用之界面活性劑……...….…67
2.5.1 鈦酸鋇粉末電氣特性…………………………………………67
2.5.2 鈦酸鋇粉體表面化學特性……………………………………69
2.5.3 界面活性劑的種類………………………………………...…70
2.5.4 水系鈦酸鋇漿料及分散劑………………………………...…71
2.5.5 有機溶劑系鈦酸鋇漿料及分散劑…………………...….…77
2.6 分散效果之評估法………………………………………………80
2.6.1 分散系統之流變性質…………………………………………80
2.6.2 沈降法………………………………………………...….…80
2.7 陶瓷薄帶製作………………………………………………….83
2.7.1 刮刀成形概述……………………………....………………83
2.7.2 影響生胚品質的變數…………………………………………83
2.7.3 燒結反應程序…………………………………………………86
第三章 實驗方法……………………………………………………90
3.1 實驗藥品…………………………………………………………90
3.2 四氯化鈦(TiCl4)溶液製作………………………………………93
3.3 共沉法製作Ba2Ti9O20粉體…………………………………...95
3.3.1 傳統共沉法製作Ba2Ti9O20粉體………………………………95
3.3.2 自動化改良式共沉法製作Ba2Ti9O20粉體……………………97
3.4 微乳膠法製作Ba2Ti9O20粉體……………………………………98
3.5 水熱法合成法……………………………………………………99
3.5.1 水熱法合成BaTiO3奈米粉體…………………………………99
3.5.2水熱法合成Ba2Ti9O20奈米前驅物粉體………………………100
3.6固態法製備Ba2Ti9O20材料配方…………………………………100
3.7 有機溶劑系奈米級鈦酸鋇BaTiO3漿料分散特性研究…………101
3.7.1溶劑系統選擇……………………………………………………101
3.7.2 磷酸酯類分散劑合成與使用…………………………………102
3.7.3 奈米鈦酸鋇漿料應用於陶瓷薄帶製作………………………102
3.8 Ba2Ti9O20材料特性分析………………………………………105
3.8.1 粒徑量測…………………………………………………..…105
3.8.2 密度量測………………………………………………………105
3.8.3 XRD晶體結構分析……………………………………...……105
3.8.4. SEM/TEM微結構觀察…………………………………………106
3.8.5. 熱重/熱差分析……………………………………………..106
3.8.6 粉末表面面積分析……………………………………………106
3.8.7感應耦合電漿質譜分析儀…………………………..…….…107
3.8.8圓柱型共振腔微波特性量測法………………………..…….107
3.8.9高頻條件下觀察材料微觀結構中的介電性質………..…….108
3.9 BaTiO3奈米漿料分散性分析……………………………………110
3.9.1 粉體界面電位量測……………………………………………110
3.9.2沉降時間與黏度量測…………………………………………110
3.9.3 添加分散劑之粉體漿料之微觀結構與表面分析……………110
3.9.4 分散劑吸附量之分析…………………………………………110
第四章 研究結果……………………………………………………112
4.1 共沈法合成Ba2Ti9O20粉體……………………………………112
4.1.1 共沈法合成Ba2Ti9O20之酸鹼值製備條件…………………112
4.1.2 共沉法Ba2Ti9O20粉體之微結構分析和粒徑分析…………116
4.1.3 共沉法Ba2Ti9O20粉體經熱處理後晶相成分、燒結緻密度與微波特性………………………………………….……………….117
4.2自動化改良式共沉法製作Ba2Ti9O20粉體……………………121
4.2.1 自動化改良式共沉法製作Ba2Ti9O20粉體性質……………121
4.2.2 改良式共沉法粉體於大氣環境下燒結製作及其微波介電特性
………………..………...………………………………………121
4.2.3改良式共沉法粉體於氧氣環境下燒結製作及其微波介電特性………………..………...……………………………………126
4.2.4改良式共沉法粉體於還原氣氛下燒結製作及其微波介電特性………………..………...……………………………………130
4.2.4(a)改良式共沉法粉體於純氮氣環境下燒結製作及其微波介電特性……………..………...……………………………………130
4.2.4(b)改良式共沉法粉體於氮氣(N2)/氫氣(H2)環境下燒結製作及其微波介電特性………………..………...……………………134
4.2.5改良式共沉法粉體於不同氣氛熱退火製作之綜合比較……139
4.3 逆微乳膠法合成Ba2Ti9O20…………………….…….……….142
4.3.1 微乳膠之三相(Oil / surfactant / water )組成………143
4.3.2 微乳膠法Ba2Ti9O20粉體之微結構分析和粒徑分析………145
4.3.3 微乳膠法Ba2Ti9O20粉體經熱處理後之成分、燒結緻密度與微波特性……………………………………………………………..145
4.4 微乳膠法Ba2Ti9O20粉體於氧氣下退火製作……………………154
4.4.1經氧氣環境熱處理後之材料成分與微結構……………….154
4.4.2經氧氣環境熱處理後之材料燒結緻密度與微波特性….…155
4.5 水熱法合成鈦酸鋇BaTiO3奈米粉體…………………….……159
4.5.1 添加雙氧水H2O2……………………………………………159
4.5.2 酸鹼值控制…………………………………………………162
4.5.3 溶劑環境的比較……………………………………………164
4.6 水熱法合成Ba2Ti9O20粉體…………………………………167
4.6.1添加雙氧水H2O2………………………………………………167
4.6.2 酸鹼值控制…………………………………………………169
4.6.3 水熱反應過程中機制探討…………………………………171
4.6.4 以TiO2/BaTiO3(core/shell)結構製備Ba2Ti9O20微波介電材料177
4.7 固態法製備Ba2Ti9O20材料配方……………………………184
4.7.1 Ba2Ti9O20成相機制探討…………………………………184
4.7.2 BaTi4O9/BaTi5O11混合物配方製作Ba2Ti9O20微波介電材料….187
4.7.3混合氧化物配方製作Ba2Ti9O20微波介電材料之燒結體特性195
4.8 奈米級鈦酸鋇BaTiO3粉體於有機溶劑中之的分散特性研
究..............................................202
4.8.1溶劑系統選擇…..……..………...……………………202
4.8.2 磷酸酯類分散劑合成與使用…...……………………207
4.8.3 粉體大小對磷酸酯類分散劑使用上的影響……………219
4.8.4 奈米鈦酸鋇漿料應用於陶瓷薄帶製作…………………221
第五章 結論……………………………………………………226
參考文獻…………………………………………………………230
附錄………………………………………………………………246
1. 林振隆, 奈米材料導論, 學富文化公司, 2002
2. 吳朗, 電子陶瓷-介電, 全欣科技圖書, 1994
3. Darko Kajfez and Pierre Guillon, “Dielectric Resonator”, University of Mississippi
4. K. Wakine, “Recent Development of Dielectric Resonator Materials and Filters in Japan”, Ferroelectrics 91, p.69-86 (1989)
5.S. B. Cohn, “Microwave Bandpass Filters Contaning High Q Dielectric Resonator”, IEEE Trans. on MTT, p.218~227 (1968)
6. 王惠傑, 通訊用介電陶瓷材料與元件, 工業材料, 115期, 1994
7. R. C. Kell, A. C. Grennham and G. C. E. Olds, “High Permittivity Temperature-Stable Ceramic Dielectric with Low Microwave Loss”, J. Am. Ceram. Soc., 56, p.352-354 (1973)
8. T. Yamaguchi, Y. Komatsu, T. Otobe and Y. Murakami, “Newly Developed Ternary (Ca,Sr,Ba) Zirconate Ceramic System for Microwave Resonator”, Ferroelectrics, 27, p.273-276 (1980)
9. G. Wolfram and He Goble, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2)”, Am. Ceram. Soc. Bull., 16, p.1455-1463 (1981)
10. P. C. Osbond, R. W. Whatmore and F. W. Ainger, “The Properities and Microwave Application of Zirconnium Titanate Stannate Ceramics”, Brit. Ceram. Proc., 36, p.167-168 (1985)
11. K. Wakino, K. Minai and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators”, J. Am. Ceram. Soc., 67, p.278-281 (1984)
12. S. Kawashima, I. Nishida, I. Ueda and H. Ouchi, “Dielectric Properties of Ba(Zn1/3Nb2/3)O3-Ba(Zn1/3Ta2/3)O3 Ceramics”, Am. Ceram. Soc. Bull., 60, p.401 (1981)
13. S. Nomura, K. Toyama and K. Kaneta, “Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature-Stable High Dielectrics Constant and Low Microwave Loss”. Jpn. J. App. Phys., 21[10], p.624-626 (1982)
14. H. M. O'Bryan and J. Thomson. JR, “Phase Equilibrium in the TiO2-rich Region of the System BaO-TiO2”, J. Am. Ceram. Soc., 57[12], p.522-526 (1974)
15. H. M. O'Bryan, J. Thomson. JR and J.K. Plourde, “A New BaO-TiO2 Compond With Temperature-stable High Permittivity and Low Microwave Loss”, J. Am. Ceram. Soc., 57[10], p.450-453 (1974)
16. G. D. Fallon and B. M. Gatehouse, “The Crystal Structure of Ba2Ti9O20 : A Hollandite Related Compound”, J. Solid State Chem., 49 p.59-64 (1983)
17. H. M. O'Bryan, W.H. Grodkiewicz and J.L. Bernstein, “Preparation and Unit-Cell Paramaters of Single Crystals of Ba2Ti9O20”, J. Am. Ceram. Soc., 63[5-6], p.309~310 (1979)
18. G. Grzinic and L. A. Bursill, “The Hollandite-Related Strucrure of Ba2Ti9O20”, J. Solid State Chem., 47, p.151-163 (1983)
19. E. Tillmanns, W. Hofmeister and W. H. Baur, “Crystal Structure of the Microwave Dielectric Resonator Ba2 Ti9 O20”, J. Am. Ceram. Soc., 66, p.268-270 (1983)
20. D. E. Rase and R. Roy, “Phase Equilibrium in the System BaO-TiO2”, J. Am. Ceram. Soc., 38[3], p.102-113 (1955)
21. G. H. Jonker and W. Kwestroo, “Ternary System BaO-TiO2-SnO2 and BaO-TiO2-ZrO2”, J. Am. Ceram. Soc., 41[10], p.390-394 (1958)
22. H. M. O’Bryan, “Ba2Ti9O20 Phase Equilibria”, J. Am. Ceram. Soc., 6[1], p.66-68 (1983)
23. T. Negas, R. S. Roth, H. S. Parker and D. Minor, “Subsolidus Phase Relations in the BaTiO3-TiO2 System”, J. Solid State Chem., 9 p.297-307 (1974)
24. T. Jaakola, A. Uusimäki and S. Leppävuori, “Importance of Homogeneous Composition in Sintering Behaviour of Ba2Ti9O20 Ceramics”, Int. J. Hight Tech. Cerm., 2, p.195-206 (1986)
25. S. Nomura, K. Toyama and K. Kaneta “Effect of MnO on the Dielectric Properties of Ba2Ti9O20 Ceramics at Microwave Frequency”, Jpn. J. Appl. Phys., 22[7], p.1125-1128 (1983)
26. C. Chatterjee, A. Paul and A. N. Virkar, “Effect of SrO Addition on Densification and Dielectric Properties of Barium-nano-titanate”, J. Mater. Sci. Let., 9, p.1049-1051 (1990)
27. T. Jaakola,J. Möttönen ,A. Uusimäki,R. Rautioaho and S. Leppävuori “Preparation of Nd-doped Ba2Ti9O20 Ceramics for use in Microwave Applications”, Ceram. Inter., 13, p.151-157 (1987)
28. K. M. Yoon, J. B. Kim and W. S. Kim “Effect of BaSnO3 on the Microwave Dielectric Properties of Ba2Ti9O20”, J. Mater. Res., 11[8], p.1996-2001 (1999)
29. G. H. Jonker and W. Kwestroo, “The Ternary Systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2”, J. Am. Ceram. Soc., 41[10], p.390-394 (1958)
30. J. M. Wu and H. W. Wang, “Affecting Factors the Formation Ba2Ti9O20”, J. Am. Ceram. Soc., 71 [10], p.868 -875 (1988)
31. L. W. Chu, G. H. Hsiue and I. N. Lin, and Y. C. Chen, Novel Reaction Mechanism for the Synthesis of Ba2Ti9O20 Materials by Nano-Sized Intermediate Materials”, Nanotechnology, 17, p.185-191 (2005)
32. H. M. Wang and C. L. Huang, “Single Phase Ba2Ti9O20 Microwave Dielectric Ceramics Prepared by Low Temperature Liquid Phase Sintering”, Jpn. J. Appl. Phys., 39, p.3528-3529 (2000)
33. H. W. Wang, “Comment on Effect of Al2O3 and Bi2O3 on the Formation Mechanism of Sn-doped Ba2Ti9O20”, J. Am. Ceram. Soc., 78[4], p.1134-1135 (1995)
34. W. T. Huang, K. S. Liu, L. W. Chu, G. H. Hsiue and I. N. Lin, “Microwave Dielectric Properties of LTCC Materials Consisting of Glass- Ba2Ti9O20 Composites”, J. Euro. Ceram. Soc., 23, p.2559-2563 (2003)
35. Y. C. Lee, W. H. Leeb and F. S. Shieuc, “Microwave Dielectric Properties and Microstructure of Ba2Ti9O20-based Ceramics with 3ZnO-B2O3 Addition”, J. Euro. Ceram. Soc., 25, p.3459-3468 (2005)
36. J. J. Ritter, R. S. Roth and J. E. Blendell, “Alkoxide Precursor
Synthesis and Characterization of Phase in the Barium-Titanium Oxide System”, J. Am. Ceram. Soc., 69[2], p.155-162 (1986)
37. H. C. Lu, L. E. Burkhart and L. Glenn, “Sol-Gel Process for the Preparation of Ba2Ti9O20 and Ba2Ti5O11 ”, J. Am. Ceram. Soc., 74[5], p.968-972 (1991)
38. J. H. Choy and Y. S. Han , “Microwave Characteristics of Bao-TiO2 Ceramics Prepared Via a Citrate Route”, J. Am. Ceram. Soc., 78[5], p.69-72 (1995)
39. J. H. Choy, Y. S. Han, J. T. Kim and Y. H. Kim, “Citrate Route to Ultra-fine Barium Polytitanates with Microwave Dielectric Properties”, J. Mater. Chem ., 5[1], p.57-63 (1995)
40. R. D. Purohit and A. K. Tyagi, “Synthesis of Monophaasic Ba2Ti9O20 through Gel Combution”, J. Mater. Chem., 12, p.1218-1221 (2002)
41. Y. B. Xu, X. M. Chen and Y. Wu, “Preparation of BaTi4O9 Ceramic Powder via Ethylenediamine Tetraacetic Acid Precursor”, Mater. Lett., 44, p.370-373 (2000)
42. Y. B. Xu, X. M. Chen and L. B. Wang, “Sol-gel Preparation of BaTi4O9 and Ba2Ti9O20”, J. Am. Ceram. Soc., 84[3], p.669-671 (2001)
43. Y. Xu, X. Yuan, G. Huang and H. Long, “Polymeric Precursor Synthesis of Ba2Ti9O20”, Mater. Chem. Phys., 90, p 333-338 (2005)
44. G. Pfaff, “Peroxide Route to Synthesize Ba2Ti9O20”, J. Mater. Sci. lett., 12, p.32-34 (1993)
45. D. J. Kim and D. M. Kroeger, “Optimization of Critical Current Density of Bulk YBCO Superconductor Prepared by Coprecipitation in Oxalic Acid”, J. Mat. Sci., 28, p.4744-4748 (1993)
46. A. Watanabe and H. H. Haneda, “Preparation of Lead Magnesium Niobate by a Coprecipitation Method”, J. Mat. Sci., 27, p.1245-1249 (1992)
47. H. S. Potdar, S. B. Deshpande and S. K. Date, “Chemical Copreicpitation of Mixed (Ba+Ti) Oxalates Precursor Leading to BaTiO3 Powders”, Mater. Chem. Phys., 58, p.121-127 (1999)
48. S. Kim, M. H. Lee, T. Y. Noh and C. Lee, “Preparation of Barium Titanate by Homogeneous Precipitation”, J. Mater. Sci., 31, p.3643-3645 (1996)
49. T. T. Fang and H. B. Lin, “Thermal Analysis of Precursors of Barium Titanate Prepared by Coprecipitation”, J. Am. Ceram. Soc., 73[11], p.3363-3367 (1990)
50. S. Maschio, A. Bachiorrini, R. Dimonte and L. Montanaro, “Preparation and Characterization of LaNbO4 from Amorphous Precursors”, J. Mat. Sci., 30, p.5433-5437 (1995)
51. L. W. Chu, G. H. Hsiue, Y. J. Chiang, K. S. Liu and I. N. Lin, “Ultra-fine Ba2Ti9O20 Microwave Dielectric Materials Synthesized by Chemical Process”, J. Euro. Ceram. Soc., 24, p.1781-1785 (2004)
52. J. F. Chen., Y. Wang, F. Guo and X. Wang “Synthesis of Nanoparticles with Novel Technology:High-Gravity Reactive Precipitation”, Ind. Eng. Chem. Res., 39[4], p.948-954 (2000)
53.施瑞虎, 超重力合成奈米微粉技術, 化工資訊, 2003
54. M. Viviani, M. Leoni, P. Nanni and V. Buscaglia, “Low Temperature Aqueous Synthesis (LTAS) of BaTiO3: A Statistical Design of Experiment Approach”, J. Euro. Ceram. Soc., 20[3], p.315-320 (2000)
55. 趙承琛, 陳翰祥, 界面科學, 9[1], 1986
56. 陳樸誠, 化工技術, 9[3], 1985
57. 趙承琛, 界面科學基礎, 復文書局, 1996
58. 歐靜枝, 乳化溶化技術實驗, 復漢出版社, 1997
59. V.Chhabra and V. Pillai, “Synthesis Characterization and Properties of Microemulsion-Mediated Nanophse TiO2 Particles”, Langmuir, 11, p.3307 (1995)
60. J. Wang, J. Fang, S. C. Ng , L. M. Dan, C. H. Chew, X. Wang and Z. Shen, “ Ultrafine Barium Titanate Powders via Microemulsion Processing Routes”, J. Am. Ceram. Soc., 82, p.873-881 (1991)
61. W. B. Ng, J. Wang, S. C. Ng and L. M. Gan, “Process and Characterization of Microemulsion Derived Lead Magnesium Niobate”, J. Am. Ceram. Soc., 82[3], p.529-536 (1999)
62. P. Kumar, V. Pillai, S. R. Bates and D. O. Shah, “Preparation of Yba2Cu3O7-x Superconductor by Coprecipitation of Nanosize Oxalate Precursor Powder in Micro-emulsions”, Mat. Lett., 16[2-3], p.68-74 (1993)
63 P. Ayyub and M. S. Multani, “Secondary Recrystallization during Sintering of Yba2Cu3O7-□ Derived from Water-in-Oil Microemulsion”, Mat. Lett., 10[9], p.431-436 (1991)
64. L. M. Gan, L. H. Zhang, H. S. O. Chan, C. H. Chew and B. H. Loo, “Preparation of Fine LaNiO3 Powder from Oxalate Precursors via Reactions in Inverse Microemulsions”, Mater. Chem. Phys., 37[3], p.263-268 (1994)
65. L. M. Gan, L. H. Zhang, H. S. O. Chan, C. H. Chew and B. H. Loo, “A Novel Method for the Synthesis of Perovskite-type Mixed Metal Oxide by the Inverse Microemulsion Technique”, J. Mater. Sci., 31[4], p.1071-1079 (1996)
66. B. P. Lim , J. Wang, S. C. Ng, C. H. Chew and L. M. Gan, “A Bicontinuous Micromulsion Route to Zinc Oxide Powder”, Ceram. Inter., 24, p.205-209 (1998)
67. J. Wang, L. S. Es, S. C. Ng, C. H. Chew and L. M. Gan, “Reduced Crystallization Temperature in a Microemulsion-derived Zirconia Precursor”, Mater. Lett., 30, p.119-124 (1997)
68. L. W. Chu, G. H. Hsiue and I. N. Lin, “Ultra-fine Ba2Ti9O20 Powders Synthesized by Inverse Microemulsion Processing and Their Microwave Dielectric Properties”, J. Am. Ceram. Soc., 88, p.3405 -3411 (2005)
69. J. Y. Choi , C. H. Kim and D. K. Kim “Hydrothermal Synthesis of Spherical Perovskite Oxide Powders using Spherical Gel Powders, J. Am. Ceram. Soc., 81, 5, p.1353-1356 (1998)
70. S. F. Liu, I. R. Abouthu and S. Komarneni, “Barium Titanate Ceramics Prepared from Conventional and Microwave Hydrothermal Powders”, Mater. Lett., 38, p.344-350. (1999)
71. M. Wu, J. Long , G. Wang , A. Huang , Y. Luo , S. Feng and R. Xu “Hydrothermal Synthesis of Tetragonal Barium Titanate from Barium Hydroxide and Titanium Dioxide under Moderate Condition”, J. Am. Ceram. Soc., 82[11], p.3254-3256 (1999)
72. P. Princeloup, C. Courtois , A. Leriche and B. Thierry, “Hydrothermal Synthesis of Nanometer-sized Barium Titanate Powders:Control of Carium/Titanium Ratio, Sintering and Dielectric Properties”, J. Am. Ceram. Soc, 82 , 11, p.3049-3056 (1999)
73. D. Chen and X Jia, “Solvothermal Synthesis and Characterization of Barium Titanate Powders”, J. Am. Ceram. Soc., 83, 10, p.2637-2639 (2000)
74. P. Pinceloup, C. Courtois, J. Vicens, A. Leriche and B. Thierry. “Evidence of a Dissolution-precipitation Mechanism in Hydrothermal Synthesis of Barium Titanate Powders”, J. Euro. Ceram .Soc., 19, p.937-977 (1999)
75. S. Urek and M. Drofenik, “The Hydrothermal Synthesis of BaTiO3 Fine Particles from Hydroxide-alkoxide Precursors”, J. Euro. Ceram. Soc., 18, p.279-286 (1998)
76. D. Chen , X. Jiao and D. Chen “Solvothermal Synthesis of a-Fe2O3 Particles with Different Morphologies”, Mater. Res. Bull., 36, p.1057-1064 (2001)
77. B. L. Newalkar, S. Komarneni and H. Katsuki, “Microwave- Hydrothermal Synthesis and Characterization of Barium Titanate Powders”, Mater. Res. Bull., 36[13-14], p.2347-2355 (2001)
78. S. F. Liu, I. R. Abouthu and S. Komarnaeneni, “Barium titanate ceramics prepared from conventional and microwave hydrothermal powders”, Mater. Lett., 38[5], p.344-350 (1999)
79. J. O. Eckert, C. C. HungHouston, B. L. Gerston, M. M. Lencka and R. E. Riman, “Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate”, J. Am. Cream. Soc., 79, p.2929-2939 (1996)
80. J. A. Kerchner, J. Moon, R. E. Chodelka, A. A. Morrone and J. H. Adair, ”Nucleation and Formation Mechanisms of Hydrothermally Derived Barium Titanate”, ACS Symp Ser 681, p.106-119 (1998)
81. L. Qi, B. I. Lee, P. Badheka, D. H. Yoon, W. D. Samuels and G. J. Exarhos, “Short-range Dissolution-Precipitation Crystallization of Hydrothermal Barium Titanate”, J. Euro. Ceram. Soc., 24[13], p. 3553-3557 (2004)
82. J. R. Huang, Z. X. Xiong, C. Fang and B. L. Feng, “Hydrothermal Synthesis of Ba2Ti9O20 Nano-powder for Microwave Ceramics”, Mater. Sci. Eng. B, 99[1-3], p.226-229 (2003)
83. L. W. Chu, G. H. Hsiue, and I N. Lin, “Synthesis of Ba2Ti9O20 Materials via Dissolution-Precipitation Mechanism in Hydrothermal Process”, Acta Mater., 54, p.1671-1677 (2006)
84. G. D. Parfitt, “ Dispersion of Powders in Liquids”, 3rd. ed. Applied Science Publishers, Inc, New Jersey (1981)
85. D. H. Napper, “Polymeric Stabilization of Colloidal Dispersions”, Academic Press Inc, San Diego (1983)
86. H. Ottewill, “Stablity and Instability in Disperse Systems”, J. Colloid Interface Sci., 58, p.357-373 (1977)
87. J. Th. G. Overbeek, “Recent Developments in the Understanding of Colloid Stability”, J. Colloid Interface Sci., 58, p.408-422 (1977)
88. 王惠民, 兩性高分子對黏土粒子行為之影響, 成大化工所, 1994
89. D. H. Napper, “Steric Stabilization”, J. Colloid Interface Sci., 58, p.390-407, (1977)
90. W. Heller and T. L. Pugh, Polymer Sci., 67, p.203 (1960)
91. B. Vincent, Advanced in Colloid and Interface Science, 4, p.193-277 (1974)
92. E. D. Goddard and B. Vincent, “Polymer Adsorption and Dispersion Stability”, ACS Symposium Series, 240, Washinton, D.C. (1984)
93. T. F. Tadros, “The Effect of Polymer on Dispersion properties”, Academic Press, London (1982)
94. 李鴻銘, 異性兩性苯乙烯-馬來酸酐共聚物之合成與特性, 成大化 工所, 1995
95. J. M. H. M. Schentijens, G. J. Fleer, J. Phys. Chem., 83, p.1619 (1979)
96. T. C. Patton, J. Paint Tech., 42 [551], p.666 (1970)
97. M. J. Rosen, “Surfactants and Interfacial Phenomena”, John Willy and Sons. Inc, New York (1978)
98. W. C. Griffin,“Classification of Surface-active Agents by HLB”, Journal of the Society Cosmetic of Chemists, 5, p.249 (1954)
99. 王鳳英, 界面活性劑的原理與應用, 高立圖書有限公司, p.110-113, 1993
100. 歐靜枝, 乳化溶化技術實務, 復漢出版社印行, 1992
101. R. Sowada and J. C. Mc Gowan, “Calculation of HLB”, Tenside
Surfactants Detergents, 29[2], p.109-113 (1992)
102. S. S Davis and A. Smith, “The Theory and Practice of Emulsion
Technology”, Academic Press, New York. p.325-346 (1976)
103. 周佳樺, 溶劑及酸鹼值對單甘油酯之Mesomorphic Crystalline的影響, 實踐大學食品營養研究所碩士論文, 2002。
104. D. Myers, “Surface, Interface and Colloids”, VCH Polishers, New York, p.187-220 (1990)
105. H. K. Schmidt, “Organic Modified Silicate and Ceramics an Two-phase System: Synthesis and Processing”, J. Sol-gel Soc. Tech., 8, p.557-565 (1997)
106. H. K. Schmidt, M. Menning, R. Nonninger, P. W. Oliveira and H. Schirra, “Oraganic-inoraganic Hybrid materials processing and Applications”, Mat. Res. Soc. Symp. Proc, 576, p.395-407 (1999)
107. T. Imae, K. Muto and S. Ikeda, “ The pH Dependence of Dispersion of TiO2 Particle in Aqueous Surfactant Solutions”, Colloid Polymer Sci, 269, p.43-48 (1991)
108. S. Fukuzaki, H. Urano and K. Hagata, “ Adsorption of Bovine Serum Albumin onto Metal Oxide Surface”, Journal of Fermentation and Bioengineering, 81, p.2921-2928 (1995)
109. S. Biggs, P. J. Scales, Y. K. Leong and T. W. Healy, “ Effect of Citric Adsorption on the Interactions between Zirconia Surface”, J. Chem. Soc. Faraday Trans, 91, p.2921-2928 (1995)
110. P. C. Hidber, T. J. Graule and L. J. Gauckler, “ Influence of the Dispersant Structure on Properties of Electrostatically Stabilized Aqueous Alumina Suspensions”, J. Eur. Ceram. Soc. 17, p.239-249 (1997)
111. 周德瑜, 四氯化鈦之控制水解研究, 中央大學化工所, 2001
112. 翁震良, 鈦酸鋇/鎳複合材料可靠度之研究, 台大材料所, 2000
113. M. Hillert, “On the Theory of Normal and Abnormal Grain Growth”, Acta Metal., 13[3], p.227-38 (1965)
114. G. Arlt and D. Hennings, “Dielectric Properties of Fine-grained Barium Titanate”, J. Appl. Phys, 58, p.1619-25 (1985)
115. Yainaji. Y. Enomoto, K.Kinoshita and T. Murakami, “Preparation, Characterization and Properties of Dy-Doped Small- grained BaTiO3 Ceramics”, J. Am. Ceram. Soc., 60[3-4], p.97-101 (1997)
116. M. Kahn, “Influence of Grain Growth on Dielectric Properties of Nb-Doped BaTiO3”, J. Am. Ceram. Soc., 54 [9], p.455-57 (1971)
117. V. Kumar, “Solution-Precipitation of Fine Poeders of Barium Titanate and Strontium Titanate”, J. Am. Ceram. Soc., 82[10], p.2580-84 (1999)
118. H. W. Nesbitt, G. M. Bancroft, W. S Fyfe, S. N. Karkhanis, and A. Nishijima, “Thermodynamic Stability and Kinetics of Perovskite Dissolution,” Nature, 289 [29],p.358-62 (1981)
119. M. M. Lencka, and R. E. Riman, “Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders”, Chem. Mater., 5, p. 61-70 (1993)
120. K. O. Asare, F. J. Arriagada and J. H Adair, “Solubility Relationships in the Coprecipitation Synthesis of Barium Titanate: Heteroqeneous Equilibiria in the Ba-Ti-C2O4-H2O”, p.47-53 in Ceramic Transactions, Vol. 1, Ceramic Powder Science IIA. Edited by G. L. Messing, E. R. Fuller Jr. and H. Hausner, American Ceramic Society
121. S. Bendale, J. R Venigalla, E. D Amrose, Jr. Verink and J. H. Adair, “Preparation of Barium Titanate Films at 550C by an Electrochemical Method,” J. Am. Ceram. Soc., 76 [10], p.2619-27 (1993)
122. D. A. Anderson, J. H. Adair, D. Miller, J. V. Biggers, and T. R. Shrout, “Surface Chemistry Effects on Ceramic Processing of BaTiO3 Powders”, in Ceramic Transactions, vol.1, Ceramic Powder Science II., American Ceramic Society, Columbs, OH, p.485-492(1988)
123. D. V. Miller, J. H. Adair and R. E. Newham, “Dissolution of Barium Titanate in Nonaqueous Solvents”, p.493-500(1988)
124. S. I. Hirano, “Hydrothermal Processing of Ceramics”, Am. Ceram. Soc. Bull., 66 [9], p.2-44 (1987)
125. Z. Zhang, P. J. Pigram, J. Nowotny and R. N. Lamb, “Surface Cation Nonstoichiometry in Undoped BaTiO3”, J. Eur. Ceram. Soc., 34 [1], p.254-262 (1998)
126. C. W. Chiang and J. H. Jean, “ Effect of Barium Dissolution on Dispersing Aqueous Barium Titanate Suspensions”, Mater. Chem. Phys., 80[3], p.647-655 (2003)
127. J. H. Jean and H. R. Wang “Stabilization of Aqueous BaTiO3 Suspensions with Ammonium Salt of Poly(acrylic acid) at Various pH Values”, J. Maser. Res., 13[8], p.2245-2250 (1998)
128. Z. C. Chen, T. A. Ring and J. Lemaitre “Stabilization and Processing of Aqueous BaTiO3 Suspensions with Polyacrylic acid”, J. Am. Ceram. Soc., 75[12], p. 3201(1992)
129. W. M. deLaat , G. L. T. Vandenheuvel and M. R. Bohmer “Kinetic Aspects in the Adsorption of Polyacrylic Acid Salts onto BaTiO3”, Colloids. Surf. A, 98, p.61-67 (1992)
130. J. H. Jean and H. R. Wang, “Effects of Solids Loading, pH, and Polyelectrolyte Addition on the Stabilization of Concentrated Aqueous BaTiO3 Suspensions”, J. Am. Ceram. Soc., 83 [2], p.277-80 (2000)
131. D. Hotza and P. Greil, “Aquepus Tape Casting of Ceramic Powders”, Mater. Sci. Eng., 202, p.206-217 (1995)
132. 陳龍賓, 分散劑的合成以及對於鈦酸鋇漿體分散性能的評估, 師範大學化學研究所, 2001
133. 虞邦英, 鈦酸鋇膠粒於水基溶液中之表面吸附及分散研究, 臺灣大學材料科學與工程學研究所, 2000
134. 郭炳林, 苯胺衍生物縮合體之分散劑及其合成方法, 中華國專利067522, 1994
135. S. Mizuta, “Dispersion of BaTiO3 Powders”, Part 1, Ceramics Intrnational, 10, p.43-48 (1984).
136. T. Chartier, E. Jorge and P. Boch , "Dispersion Properties of BaTiO3 Tape-Casting Slurries," J. Euro. Ceram. Soc, 11, p 387, (1993)
137. F. Fowkes, “Interface acid-bace/charge-transfer properties, in J. D. Andrade (Ed), Surface and Interface Biopolymers”, vol. 1, Plenum, New York, p.337-371 (1985)
138. K. Mikeska and W. R. Cannon, Colloids surface. 29, p.305 (1988)
139. U. Paik, V. A. Hackley, S. C. Choi and Y. G. Jung, “The effect of electrostatic repulsive forces on the stability of BaTiO3 particles suspended in non-aqueous media”, Colloids surface A. Physicochem. Eng. Asp., 135, p.77-88 (1998)
140. W.R. Cannon, R. Becker and K. R. Mikeska, “In: Advances in ceramics”, vol. 26, The American ceramic society, Westerville, OH , p.525 (1989)
141. S. Bhattacharjee, M. K. Paria and H. S. Maiti, “Polyvinyl Butyral as a Dispersant for Barium Titanate in a Non-aqueous Suspension” J. Mater. Sci. 28, p.6490-6495 (1993)
142. W. J. Tseng and C. L. Lin, “Effect of polyvinyl butyral on the rheological properties of BaTiO3 powder in ethanol-isopropanol mixtures”, Mater. Lett., 57, p.223-228 (2002)
143. Y. L. Song, X. L. Liu and J. F. Chen, “The Maximum Solid Loading and Viscosity Estimation of Ultra-fine BaTiO3 Aqueous Suspensions”, Colloids Surf. A, 227, p.27-34 (2004)
144. Z. G. Shen, J. F. Chen, H. K. Zou and J. Yun ,” Diapersion of nanosized aqueous suspensions of barium titanate with ammouium polyacrylate” J. Colliod Interface Sci., 275, p.158 (2004)
145. 賴建吉, 親油基或親水基之馬來酸酐共聚物之合成與其效果, 成大化工所, 1992
146. G. D. Botsaris and Y. M. Glazman, “ Interfacial Phenomena in Coal Technology”, Marcel Dekker, New York (1989)
147. R. Darby and B. Roders, “Non-newtonian Viscous Properties of Methacoal Suspensions”, AICHE J., 26, 310-312, (1980)
148. R. J. Shanefield and R. E. Mistler “Fine Grained Alumins Substrates, The Manufracturing Processing”, Am. Ceram. Soc. Bull., 53, p.416-420 (1974)
149. R. Capek, “Multilayer Ceramic Capacitors”, U.S. Patent, No. 3549415, Dec (1970)
150. T. Ogawa, A. Ando and K. Wakino, Ferroelectrics, 68, p.249-256 (1986)
151. L. J. Bowen, T. Shrout, W. A.Schulze and J. V. Biggers, “Piezoelectric Properties of Internally Electroded PZT Multilayers”, Ferroelectrics, 27, p.59-62 (1980)
152. K. Mikeska and W. R. Cannon, In Ceramic Society 9, edited by J.A. Mangels and G. L. Messing., Am. Ceram. Soc. Inc. Columbus, Ohio p.164-183 (1984)
153. A. Roosen, “Basic Requirement for Tape Casting of Ceramic Powder” in ceramic Transactions, Vol.1, Ceramic Powder Science ΠB Edited by E. L. Messing, E. R. Fuller and H. Hansner, Am. Ceram. Soc.,Wester Ville, OH, p.675-692 (1984)
154. R. L. Coble, “Sintering crystalline solids. I. Intermediate and final state diffusion models.” J. Appl. Phys., 32, p.787-793 (1961)
155. C. Greskovich and J. H. Rosolowski, "Sintering of Covalent Solids," J. Am. Ceram. Soc., 59, p.336-341 (1976)
156. D. W. Budworth, Trans. Brit. Ceram. Soc., 69, p.29-35 (1970)
157. F. F. Lange and B. I. Davis, in “Advances in Ceramics”, 12, Science and Technology of Zirconua II”,Edited by N.Claussen, M.Ruhle, and A. H. Heuer, Am. Ceram. Soc. Columbus. OH, p.699-713 (1984)
158. H. M. O’Bryan , “Dielectric for Microwave Applications”, United States Patent 4563661 (1986)
159. W. Y. Lin, “Dielectric Properities of Microstructure-Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82[2], p.325-333 (1999)
160. L. Qi, B. Lee, P. Badheka, D. H. Yoon, W. D. Samuels and G. J. Exarhos, “Short-range dissolution-precipitation crystallization of hydrothermal barium titanate”, J. Euro. Cream. Soc., 24[13], p.3553-3557 (2004)
161. I. Langmiur, Science, 88, p.450 (1938)
162. S. Laskowski, J. Colloid Chemistry in Mineral Processing, Elsevier, New York, 1992, Chapter 4.
163. 張政宏,界面化學與活性劑概論,國興出版社,2000
164. N. Lebars, D Tinet, A. M. Faugere, H. Vandamme and P Levitz, ” Adsorption Mechanism of Ester phosphate on Barium-Titanate in Organic Medium – Preliminary - Results on the Structure of the Adsorbed Layer”, J. de physique iii, 1 [5], p.707-718 (1991)
165. B. Rai, P. Sathish and S. Krishnamurty, “Rational Design of Dispersants for Colloidal Processing of Barium Titanate Suspensions by Molecular Modeling Radip, Ferroelectrics, 306, p.195-208 (2004)
166. A. C. Cabllero, J. F. Fernandez, C. Moure and P. Duran, “Effect of residual phosphorous left by phosphate ester on BaTiO3 Ceramics”, Mater. Res. Bull., 32[2], p.221-229 (1997)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *